Звезды их эволюция и строение. Звезды

Звёзды - раскаленные газовые шары, источником энергии и излучения в которых являются термоядерные реакции, главным образом превращение водорода в гелий. Этот процесс происходит в центре звезды, где температура достигает 15 млн. кельвинов (0,01 гр. Цельсия соответствует 273,16 кельвинам). Всё вещество при такой температуре и значительном давлении фактически находится в состоянии плазмы, ионизированного газа. Процесс протекания термоядерной реакции несколько отличается у звёзд массы Солнца и у более массивных (в нем принимают участие более тяжелые элементы, такие как углерод и азот), однако результом везде является синтез ядра гелия из четырёх ядер водорода при выделении энергии. Cодержание водорода по массе в звёздах класса Солнца составляет примерно 70-75%, остальное - гелий и другие элементы, содержание которых обычно не превышает 1,5-2%.

Диаграмма Герцшпрунга - Ресселла Видимая поверхность звезды - фотосфера. Температура фотосферы связана с такой характеристикой звезды, как спектральный класс. Всего основных семь классов: O, B, A, F, G, K, M (плюс десять подклассов от 0 до 9). Также существует разделение на C0-C9 (углеродные), S-звезды (с полосами ZrO в спектре) и ещё несколько не часто встречающихся. O - самые горячие с эффективной температурой более 25000К и имеют бело-голубой цвет, M - самые холодные с эффективной температурой менее 3500К и имеют красный цвет. К примеру, Солнце имеет класс G2 с эффективной температурой около 5700К. Спектральный класс связан с классом светимости звезды, обозначается римскими цифрами от Ia и Ib (сверхгиганты) до VII (белые карлики). Связь эту можно проследить на диаграмме Герцшпрунга - Ресселла. Также эта диаграмма может показывать зависимость между цветом или температурой звезды и ее абсолютной звёздной величиной.

Эволюция звезд

Звёзды зарождаются в газопылевых облаках межзвездной среды благодаря сгусткам вещества, образующихся в результате внешних возмущений, например, после взрыва сверхновых. Вещество под действием гравитационных сил начинает уплотняться и нагреваться. При достижении определенной массы протозвезды температура достигает того значения, при котором начинаются ядерные реакции. Продолжительность этого процесса зависит от массы. У звёзд массы Солнца на это уходит до 30 млн. лет, тогда как у более массивных в сто раз меньше. Нужно заметить, что у звёзд с большей массой все процессы идут намного быстрее, чем у менее массивных. Последующий этап жизни звезды проходит без заметных внешних изменений довольно продолжительный срок (около 10 млрд. лет у таких звёзд как Солнце, и не более 0,5 млрд. лет у в несколько раз большей массой). В этот период идет процесс сжигания водорода в ядре звезды. При этом яркость и размер остаются постоянными, так как гравитационные силы уравновешиваются давлением газа внутри звезды. Параметры звезды в этот период определяются одной из точек так называемой главной последовательности на диаграмме Герцшпрунга - Ресселла.

Планетарная туманность Яйцо. По мере того как весь водород в ядре будет превращатся в гелий оно будет сжиматься и нагреваться, вследствие увеличения молекулярного веса. Под действием увеличившейся температуры, окружающий ядро газ расширится, и звезда значительно увеличит свои размеры, прилегающий к внешним слоям газ остынет, звезда станет красным гигантом, светимость которого останется примерно такой же из-за значительных размеров. Большие размеры звезды приведут к большой потери энергии, в результате чего она со временем опять может уменьшиться. На этом этапе на диаграмме Герцшпрунга - Ресселла звезда перемещается по одному из так называаемых эволюционных треков (на приведённой диаграмме не обозначены). При возникновении внутренней нестабильности во время расширения внешние слои звезды отделяются, образуется планетарная туманность, видимая в мощные телескопы похожей на диски планет (отсюда название). Оставшееся ядро становится белым карликом и будет постепенно остывать. Несмотря на значительную температуру, светимость белых карликов низкая из-за небольших размеров, сопоставимых с размером Земли. Максимально возможная масса таких звёзд не превышает 1,4 от солнечной массы.

Все вышесказанное справедливо для звёзд массы Солнца. Если же масса звезды превышает солнечную не менее чем в 8 раз, конечные этапы ее эволюции несколько отличаются. Так, после того как весь водород в ядре превратиться в гелий, ядро сожмется, а температура внутри него повысится до такой степени, что начнется не только сжигание водорода практически во всем объеме звезды, но и превращение гелия в более тяжелые элементы, такие как углерод и кислород, а потом и в кремний. Температура ядра при этом может достигать нескольких сотен млн. кельвинов. В какой-то момент времени все топливо будет израсходовано, ядро станет железным, система станет нестабильной и звезда в течение долей секунды сожмется. Сжатие будет происходить до тех пор, пока плотность не достигнет критического уровня, после чего произойдет отдача, сопровождаемая гигантским взрывом, наблюдаемым как взрыв сверхновой (лат. super nova).

Остатки взрыва сверхновой 1987А спустя 7 лет (в центре). Яркость вспышки при взрыве сверхновой может превосходить яркость целой галактики, а светимость в миллиарды раз выше солнечной. Выброс оболочки происходит со скоростью в несколько тысяч км/с. Наблюдаемая вспышка заметна в течение нескольких недель. Вообще же, взрыв сверхновой - крайне редкое явление, которое можно наблюдать без соответствующего оборудования всего несколько раз за тысячелетие. Пример - сверхновая 1987А, наблюдаемая с февраля 1987 года в галактике Большое Магелланово Облако в южном созвездии Золотой Рыбы на расстоянии 170 тысяч световых лет.

Первое изображение нейтронной звезды в видимом спектре. Оставшееся после взрыва ядро превращается в нейтронную звезду с массой от 1,5 до 3 масс Солнца и диаметром несколько км. Из-за сильного магнитного поля и быстрого вращения нейтронные звёзды наблюдаются как всплески радио- и рентгеновского излучения, их иногда называют еще пульсарами. Если масса оставшегося ядра превысила 3 солнечных массы, то звезда становится чёрной дырой. Гравитационные силы черной дыры столь значительны, что они поглощают любое световое излучение, и непосредственное наблюдение этих объектов с использованием оптических средств невозможно. Выпадение вещества на чёрные дыры сопровождается выделением огромной энергии, которое можно обнаружить в виде рентгеновского и гамма-излучения. В таких областях в условиях гравитации стремящейся к бесконечности все наши представления о пространстве и времени очевидно не смогут найти подтверждения, а сами области возможно могут представлять собой некие пространственные дыры, сквозь которые возможно проникновение в другие области Вселенной или Антивселенной, в которых составляющая силы гравитации по отношению к нашим представлениям будет иметь отрицательное значение. Но возможно, что чёрные дыры - это пространственно-энергетические ловушки, которые после достижения ими определённой критической массы и энергии вызовут грандиозный вселенский катаклизм при выделении накопленной энергии. Предполагается, что в центрах многих галактик имеются чёрные дыры, в том числе и в нашей.

Самым распространенным объектом во Вселенной являются звезды. Сопоставляя данные для различных звезд, можно получить общие закономерности и проверить их выполнение на примерах других звезд. Согласно современным представлениям о строении и эволюции звезд процессы, связанные с возникновением и эволюцией звезды, выглядят следующим образом.

Сначала формируется протозвезда . Частицы гигантского движущегося газопылевого облака в некоторой области пространства притягиваются друг к другу за счет гравитационных сил. Происходит это очень медленно, ведь силы, пропорциональные массам входящих в облако атомов (в основном атомов водорода) и пылинок, чрезвычайно малы. Однако постепенно частицы сближаются, плотность облака нарастает, оно становится непрозрачным, образующийся сферический "ком" начинает понемногу вращаться, растет и сила притяжения, ведь теперь масса "кома" велика. Все больше и больше частиц захватывается, все больше плотность вещества. Внешние слои давят на внутренние, давление в глубине растет, а, значит, растет и температура. (Именно так обстоит дело с газами, которые были подробно изучены на Земле). Наконец, температура становится такой большой - несколько миллионов градусов, - что в ядре этого образующегося тела создаются условия для протекания ядерной реакции синтеза: водород начинает превращаться в гелий. Об этом можно узнать, регистрируя потоки нейтрино - элементарных частиц, выделяющихся при такой реакции. Реакция сопровождается мощным потоком электромагнитного излучения, которое давит (силой светового давления, впервые измеренной в Земной лаборатории П.Лебедевым) на внешние слои вещества, противодействуя гравитационному сжатию. Наконец, сжатие прекращается, поскольку давления уравновешиваются, и протозвезда становится звездой. Чтобы пройти эту стадию своей эволюции протозвезде нужно несколько миллионов лет, если ее масса больше солнечной, и несколько сот миллионов лет, если ее масса меньше солнечной. Звезд, массы которых меньше солнечной в 10 раз, очень мало.

Масса является одной из важных характеристик звезд. Любопытно отметить, что довольно распространены двойные звезды - образующиеся вблизи друг друга и вращающиеся вокруг общего центра. Их насчитывается от 30 до 50 процентов от общего числа звезд. Возникновение двойных звезд, вероятно, связано с распределением момента количества движения исходного облака. Если у такой пары образуется планетная система, то движение планет может быть довольно замысловатым, а условия на их поверхностях будут сильно изменяться в зависимости от расположения планеты на орбите по отношению к светилам. Весьма возможно, что стационарных орбит, вроде тех, что могут существовать в планетных системах одинарных звезд (и существуют в Солнечной системе), не окажется совсем. Обычные, одинарные звезды в процессе своего образования начинают вращаться вокруг своей оси.



Другой важной характеристикой является радиус звезды. Существуют звезды - белые карлики, радиус которых не превышает радиуса Земли, существуют и такие - красные гиганты, радиус которых достигает радиуса орбиты Марса. Химический состав звезд по спектроскопическим данным в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 атом углерода, остальных элементов еще меньше. Из-за высоких температур атомы ионизируются, так что вещество звезды является в основном водородно-гелиевой плазмой - в целом электрически нейтральной смесью ионов и электронов. От массы и химического состава исходного облака зависят светимость и цветность (спектральный класс) образовавшейся звезды. Светимость звезды – это количество энергии, излучаемой ею в единицу времени. А ее спектральный класс характеризует цвет звезды , который в свою очередь зависит от температуры ее поверхности. При этом "синие" звезды более горячие, чем "красные", а наше "желтое" Солнце имеет промежуточную температуру поверхности порядка 6000 градусов. Традиционно спектральные классы от горячих к холодным обозначаются буквами O, B, A, F, G, K, M (последовательность легко запомнить с помощью мнемонического правила "O, Be A Fine Girl, Kiss Me"), при этом каждый класс делится на десять подклассов. Так, наше Солнце имеет спектральный класс G2.

По мере "выгорания" водорода в центре звезды ее масса немного меняется. Постепенно энергии в центре звезды выделяется все меньше, давление падает, ядро сжимается, и температура в нем возрастает. Ядерные реакции протекают теперь только в тонком слое на границе ядра внутри звезды. В результате звезда в целом начинает «разбухать», а ее светимость увеличиваться. Звезда превращается в так называемый «красный гигант». После того, как температура сжимающегося (теперь уже гелиевого) ядра красного гиганта достигнет 100-150 млн. градусов, начинается новая ядерная реакция синтеза - превращение гелия в углерод. Когда и эта реакция исчерпает себя, происходит сброс оболочки - существенная часть массы звезды превращается в планетарную туманность. Горячие внутренние слои звезды оказываются «снаружи», и их излучение «раздувает» отделившуюся оболочку. Через несколько десятков тысяч лет оболочка рассеивается, и остается небольшая очень горячая плотная звезда. Медленно остывая, она превращается в «белый карлик». Белые карлики, по-видимому, представляют собой заключительный этап нормальной эволюции большинства звезд.

Но встречаются и аномалии. Некоторые звезды время от времени вспыхивают, превращаясь в новые звезды. При этом они каждый раз теряют порядка сотой доли процента своей массы. Из хорошо известных звезд можно упомянуть новую в созвездии Лебедя, вспыхнувшую в августе 1975 года и пробывшую на небосводе несколько лет. Но иногда случаются и вспышки сверхновых - катастрофические события, ведущие к полному разрушению звезды, при которых за короткое время излучается энергии больше, чем от миллиардов звезд той галактики, к которой принадлежит сверхновая. Такое событие зафиксировано в китайских хрониках 1054 года: на небосводе появилась такая яркая звезда, что ее можно было видеть даже днем. Результат этого события известен теперь как Крабовидная туманность, «медленное» распространение которой по небу наблюдается в последние 300 лет. Скорость разлета ее газов в результате взрыва составляет порядка 1500 м/с, но она находится очень далеко. Сопоставляя скорость разлета с видимым размером Крабовидной туманности, мы можем рассчитать время, когда она была точечным объектом, и найти его место на небосклоне – эти время и место соответствуют времени и месту появления звезды, упомянутой в хрониках.

Если масса звезды, оставшейся после сброса оболочки «красным гигантом» превосходит массу Солнца в 1,2-2,5 раза, то, как показывают расчеты, устойчивый «белый карлик» образоваться не может. Звезда начинает сжиматься, и ее радиус достигает ничтожных размеров в 10 км, а плотность вещества такой звезды превышает плотность атомного ядра. Предполагается, что такая звезда состоит из плотно упакованных нейтронов, поэтому она так и называется - нейтронная звезда . Согласно этой концептуальной модели у нейтронной звезды имеется сильное магнитное поле, а сама она вращается с огромной скоростью - несколько десятков или сотен оборотов в секунду. И только обнаруженные (именно в Крабовидной туманности) в 1967 году пульсары - точечные источники импульсного радиоизлучения высокой стабильности - обладают как раз такими свойствами, каких следовало ожидать от нейтронных звезд. Наблюдаемое явление подтвердило концепцию.

Если же оставшаяся масса еще больше, то гравитационное сжатие неудержимо сжимает вещество и дальше. Вступает в действие одно из предсказаний общей теории относительности, согласно которому вещество сожмется в точку . Это явление называется гравитационным коллапсом, а его результат – «черной дырой ». Это название связано с тем, что гравитационная масса такого объекта настолько велика, силы притяжения настолько значительны, что не только какое-либо вещественное тело не может покинуть окрестность черной дыры, но даже свет - электромагнитный сигнал - не может ни отразиться, ни выйти «наружу ». Таким образом, непосредственно наблюдать черную дыру невозможно, можно лишь догадаться о ее существовании по косвенным эффектам. Двигаясь в пространстве по направлению к черной дыре (о которой мы пока ничего не знаем), можно обнаружить, что рисунок созвездий, расположенных прямо по курсу начинает меняться. Это связано с тем, что свет, идущий от звезд и проходящий неподалеку от черной дыры, отклоняется ее тяготением. По мере приближения к дыре возникнет пустая область, окруженная светящимися точками-звездами, в том числе и такими, которых раньше не наблюдалось. Свет от некоторых звезд может, проходя мимо дыры, поворачивать вокруг нее, а затем попадать в приемные устройства наблюдателя. Таким образом, одна звезда может давать несколько изображений в разных местах. Все это, конечно, противоречит как нашему жизненному опыту, так и классическим представлениям, согласно которым свет распространяется прямолинейно. Однако в пользу существования черных дыр говорит целый ряд косвенных астрономических наблюдений, а отклонение света под действием гравитационного притяжения регистрируется уже при прохождении луча мимо такого «нормального» объекта, как Солнце.

Строение звезд. Может показаться, что невозможно узнать что-либо о внутреннем строении звезд. Не только далекие звезды, но и наше Солнце кажется абсолютно недоступным для изучения его недр. Тем не менее о строении звезд мы знаем не меньше, чем о строении Земли. Дело в том, что звезды – это газовые шары, в большинстве своем – стабильные, не испытывающие ни коллапса, ни расширения. Поэтому на любой глубине давление газа равно весу вышележащих слоев, а поток излучения пропорционален перепаду температуры от внутренних горячих к наружным холодным слоям. Этих условий, сформулированных в виде математических уравнений, достаточно, чтобы на основе законов поведения газа рассчитать структуру звезды, т.е. изменение давления, температуры и плотности с глубиной. При этом из наблюдений нужно знать только массу, радиус, светимость и химический состав звезды, чтобы теоретически определить ее структуру. Расчеты показывают, что в центре Солнца температура достигает 16 млн. К, плотность 160 г/см 3 , а давление 400 млрд. атм.

Звезда является природной саморегулирующейся системой. Если по какой-то причине мощность энерговыделения в ядре звезды не сможет компенсировать излучение энергии с поверхности, то звезда не сможет противостоять гравитации: она начнет сжиматься, от этого повысится температура в ее ядре и возрастет интенсивность ядерных реакций – таким образом баланс энергии будет восстановлен.

Эволюция звезд. Звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. В прошлом столетии вообще считали, что энергии, выделяющейся при сжатии звезды, достаточно для поддержания ее светимости, но геологические данные пришли в противоречие с этой гипотезой: возраст Земли оказался значительно больше того времени, в течение которого Солнце могло бы поддерживать свое излучение за счет сжатия (ок. 30 млн. лет).

Сжатие звезды приводит к повышению температуры в ее ядре; когда она достигает нескольких миллионов градусов, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Ресселла, пока не закончатся запасы топлива в ее ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

(33.60 Кб)

В этот период структура звезды начинает заметно меняться. Ее светимость растет, внешние слои расширяются, а температура поверхности снижается – звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса ее изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжелые элементы.

Белые карлики и нейтронные звезды. Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и ее быстрое перемещение по диаграмме Герцшпрунга – Рессела. Размер атмосферы звезды увеличивается еще больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звездного ветра. Судьба центральной части звезды полностью зависит от ее исходной массы: ядро звезды может закончить свою эволюцию как белый карлик, нейтронная звезда (пульсар) или черная дыра.

Подавляющее большинство звезд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится темной и невидимой.

У звезд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества. См. также НЕЙТРОННАЯ ЗВЕЗДА.

Черные дыры. У звезд более массивных, чем предшественники нейтронных звезд, ядра испытывают полный гравитационной коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут ее покинуть, – объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только общая теория относительности. Такие объекты называют черными дырами.

Если предшественник черной дыры был членом затменной двойной системы, то и черная дыра будет продолжать обращаться вокруг соседней нормальной звезды. Про этом газ из атмосферы звезды может попадать в окрестность черной дыры и падать на нее. Но прежде чем исчезнуть в области невидимости (под горизонтом событий), он разогреется до высокой температуры и станет источником рентгеновского излучения, которое можно наблюдать с помощью специальных телескопов. Когда нормальная звезда заслоняет черную дыру, рентгеновское излучение должно пропадать.

Несколько затменных двойных с рентгеновскими источниками уже обнаружено; в них подозревают наличие черных дыр. Пример такой системы – объект Лебедь X-1. Спектральный анализ показал, что орбитальный период этой системы 5,6 сут, и с таким же периодом происходят рентгеновские затмения. Почти нет сомнений, что там находится черная дыра. См. также ЧЕРНАЯ ДЫРА.

Продолжительность эволюции звезд. Если отвлечься от некоторых катастрофических эпизодов в жизни звезд, то человеческая жизнь слишком коротка, чтобы заметить эволюционные изменения каждой конкретной звезды. Поэтому об эволюции звезд судят так же, как о росте деревьев в лесу, т.е. одновременно наблюдая множество экземпляров, находящихся в данный момент на разных стадиях эволюции.

Скорость и картина эволюции звезды почти полностью определяются ее массой; некоторое влияние оказывает и химический состав. Звезда может быть физически молодой, но уже эволюционно состарившейся в таком же смысле, как месячный мышонок старше годовалого слоненка. Дело в том, что интенсивность выделения энергии (светимость) звезд очень быстро возрастает с ростом их массы. Поэтому более массивные звезды гораздо быстрее сжигают свое горючее, чем маломассивные.

Яркие массивные звезды верхней части главной последовательности (спектральные классы О, В и А) живут значительно меньше, чем звезды типа Солнца и еще менее массивные члены нижней части главной последовательности. Поэтому родившиеся одновременно с Солнцем звезды классов О, В и А уже давно закончили свою эволюцию, а те, что наблюдаются сейчас (например, в созвездии Ориона), должны были родиться относительно недавно.

В окрестности Солнца встречаются звезды различного физического и эволюционного возраста. Однако в каждом звездном скоплении все его члены имеют практически одинаковый физический возраст. Изучая самые молодые скопления с возрастом ок. 1 млн. лет, мы видим все его звезды на главной последовательности, а некоторые еще только приближающимися к ней. В более старых скоплениях наиболее яркие звезды уже покинули главную последовательность и стали красными гигантами. У наиболее старых скоплений осталась лишь нижняя часть главной последовательности, но зато богато населены звездами ветвь гигантов и следующая за ней горизонтальная ветвь.

Если сравнить между собой диаграммы Герцшпрунга – Рессела различных рассеянных скоплений, то можно легко понять, какое из них старше. Об этом судят по положению точки обрыва главной последовательности, отмечающей вершину ее сохранившейся нижней части. У двойного скопления h и Персея эта точка лежит значительно выше, чем у скоплений Плеяды и Гиады, следовательно, оно намного моложе их.

Диаграммы Герцшпрунга – Рессела шаровых скоплений указывают на их очень большой возраст, близкий к возрасту самой Галактики. Эти скопления состоят из звезд, сформировавшихся в ту далекую эпоху, когда вещество Галактики почти не содержало тяжелых элементов. Поэтому их эволюция протекает не совсем так, как у современных звезд, хотя в целом соответствует ей.

В заключение укажем, что возраст Солнца около 5 млрд. лет, и в настоящее время оно находится в середине своего эволюционного пути. Но если бы исходная масса Солнца была всего вдвое выше, то его эволюция уже давно закончилась бы, и жизнь на Земле так и не успела бы достигнуть своей вершины в образе человека. См . также АСТРОНОМИЯ И АСТРОФИЗИКА; ГАЛАКТИКИ; ГРАВИТАЦИОННЫЙ КОЛЛАПС; МЕЖЗВЕЗДНОЕ ВЕЩЕСТВО; СОЛНЦЕ.

Происхождение и эволюция галактик и звезд.

Небесные тела находятся в непрерывном движении и изменении. Десятки тысяч лет назад небо Земли украшали фигуры других созвездий, миллиарды лет назад вообще еще не было Земли, Луны, планет, Солнца, многих звезд и галактик. Когда и как именно они произошли, наука стремится выяснить, изучая небесные тела и их системы. Раздел астрономии, занимающийся проблемами происхождения и эволюции небесных тел, называется космогонией.

Современные научные космогонические гипотезы – результат физического, математического и философского обобщения многочисленных наблюдательных данных. В космогонических гипотезах в значительной мере находит свое отражение общий уровень развития естествознания. Дальнейшее развитие науки, обязательно включающее в себя астрономические наблюдения, подтверждает или опровергает эти гипотезы. Подтверждаются те гипотезы, которые не только могут объяснить известные из наблюдений факты, но и предсказать новые открытия.

Звезды возникали в ходе эволюции галактик. Большинство астрономов считают, что это происходило в результате сгущения (конденсации) облаков диффузной материи, которые постепенно формировались внутри галактик. Одна из исходных предпосылок такой гипотезы состоит в том, что, как показывают наблюдения, “молодые” звезды всегда тесно связаны с газом и пылью. Эти звезды и диффузная материя концентрируются в спиральных ветвях галактик. Местами наиболее интенсивного звездообразования считаются массы холодного межзвездного вещества, которые называются газово-пылевыми комплексами. Наиболее изученный газово-пылевой комплекс нашей Галактики находится в созвездии Ориона, он включает в себя туманность в Орионе, более плотные газово-пылевые облака и другие объекты. Представим себе холодное газово-пылевое облако. Силы тяготения сжимают его, оно принимает шарообразную форму. При сжатии будут возрастать плотность и температура облака. Возникнет будущая, рождающаяся звезда (протозвезда). Температура ее поверхности пока еще мала, но протозвезда уже излучает в инфракрасном диапазоне, а поэтому рождающиеся звезды можно попытаться обнаружить среди довольно многочисленных источников инфракрасного излучения. Поиски протозвезд (и протогалактик) сейчас ведутся на многих обсерваториях.

Одно из основных отличий протозвезды от звезды заключается в том, что в протозвезде еще не происходят термоядерные реакции, то есть в ней нет еще основного источника энергии обычных звезд. Термоядерные реакции начинаются, когда в процессе сжатия протзвезды температура ее недрах станет порядка 107 К. С этого времени стадия сжатия звезды прекращается: сила внутреннего давления газа теперь уже может уравновесить силу тяготения внешних частей звезды.

Стадия сжатия звезд, массы которых значительно больше массы Солнца, продолжается всего лишь сотни тысяч лет, а звезды, массы которых меньше солнечной, сжимаются сотни миллионов лет. Чем больше масса звезды, тем при большей температуре достигается равновесие. Поэтому у массивных звезд большие светимости.

Стадию сжатия сменяет стационарная стадия, сопровождающаяся постепенным “выгоранием” водорода. В стационарной стадии звезда проводит большую часть своей жизни. Именно в этой стадии эволюции находятся звезды, которые располагаются на главной последовательности диаграммы “спектр – светимость”. Таких звезд больше всего. Время пребывания звезды на главной последовательности пропорционально массе звезды, так как от этого зависит запас ядерного горючего, и обратно пропорционально светимости, которая определяет темп расхода ядерного горючего. А поскольку светимость звезды пропорциональна примерно четвертой степени ее массы, то массивные звезды, массы которых в несколько раз больше массы Солнца, эволюционируют быстрее. Они находятся в стационарной стадии только несколько миллионов лет, а звезды, подобные Солнцу – миллиарды лет.

Когда весь водород в центральной области звезды превратится в гелий, внутри звезды образуется гелиевое ядро. Теперь уже водород будет превращаться в гелий не в центре звезды, а в слое, прилегающем к очень горячему гелиевому ядру. Пока внутри гелиевого ядра нет источников энергии, оно будет постепенно сжиматься и при этом еще более разогреваться. Когда температура внутри звезды превысит 1,5 * 107 К, гелий начнет превращаться в углерод (с последующим образованием все более тяжелых химических элементов). Светимость и размеры звезд будут возрастать. В результате обычная звезда постепенно превратится в красного гиганта или сверхгиганта. Многие звезды не сразу становятся стационарными гигантами, а некоторое время пульсируют, как бы проходя в своем развитии стадию цефеид.

Заключительный этап жизни звезды, как и вся ее эволюция, решающим образом зависит от массы звезды. Внешние слои звезд, подобных нашему Солнцу (но с массами, не большими 1,2 массы Солнца), постепенно расширяются и в конце концов совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик. Белых карликов в мире звезд много. Это значит, что многие звезды превращаются в белых карликов, которые затем постепенно остывают, становясь “потухшими звездами”.

Иная судьба у более массивных звезд. Если масса звезды примерно вдвое превышает массу Солнца, то такие звезды на последних этапах своей эволюции теряют устойчивость. В частности, они могут взорваться как сверхновые, обогащая межзвездную среду тяжелыми химическими элементами (которые образовались внутри звезды и во время ее взрыва), а затем катастрофически сжаться до размеров шаров радиусом в несколько километров, то есть превратиться в нейтронные звезды.

Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов, а во время взрыва сверхновых – остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений.

Если масса звезды вдвое превышает массу Солнца, то такая звезда, потеряв равновесие и начав сжиматься, либо превратится в нейтронную звезду, либо вообще не сможет достигнуть устойчивого состояния. В процессе неограниченного сжатия (коллапса) она, вероятно, способна превратиться в черную дыру. Такое название связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновские лучи и т.д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но нет сомнения в том, что звезды рождаются, живут, умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной; звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

Современные представления о происхождении планет.

Проблема происхождения планет – очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и других естественных наук (прежде всего наук о Земле). Дело в том, что пока можно исследовать только единственную планетарную систему, окружающую наше Солнце. Как выглядят более молодые и более старые системы, вероятно существующие вокруг других звезд, неизвестно. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовалось Солнце и другие звезды, потому что планетарные системы возникают вокруг звезд в результате закономерных процессов развития материи.

Наиболее важные выводы планетной космогонии сводятся к следующему:

а) планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда –то окружала Солнце. Эту туманность часто называют “допланетным” или “протопланетным” облаком. Считается, что солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неизвестно, как произошло отделение части туманности, из которой возникли планеты, от “протосолнца”.

б) формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие (уплощение) вращающейся туманности, ее удаление от “протосолнца”, столкновение частиц, их укрупнение и т.д. Изменялась температура вещества, туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с “протосолнцем”. Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты).

в) спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, то есть тоже из вещества протопланетной туманности. Пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты.

Основная идея современной планетной космогонии – это то, что планеты и их спутники образовались из холодных твердых тел и частиц.

Строение, происхождение и эволюция Вселенной с точки зрения современной науки.

Вселенная бесконечна во времени и пространстве. Каждая частичка вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна, так как она является вечно самодвижущейся материей.

Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука так или иначе изучает Вселенную, точнее, те или иные её стороны. С развитием кибернетики в различных областях научных исследований приобрели большую популярность методики моделирования. Сущность этого метода состоит в том, что вместо того или иного реального объекта изучается его модель, более или менее точно повторяющая оригинал или его наиболее важные и существенные особенности. Модель не обязательно вещественная копия объекта. Построение приближенных моделей различных явлений помогает нам всё глубже познавать окружающий мир. Так, например, на протяжении длительного времени астрономы занимались изучением однородной и изотропной (воображаемой) Вселенной, в которой все физические явления протекают одинаковым образом и все законы остаются неизменными для любых областей и в любых направлениях. Изучались так же модели, в которых к этим двум условиям добавлялось третье - неизменность картины мира. Это означает, что в какую бы эпоху мы не созерцали мир, он всегда должен выглядеть в общих чертах одинаково. Эти во многом условные и схематические модели помогли осветить некоторые важные стороны окружающего нас мира. Но! Как бы сложна ни была та или иная теоретическая модель, какие бы многообразные факты она ни учитывала, любая модель – это еще не само явление, а только более или менее точная его копия, так сказать, образ реального мира. Поэтому все результаты, полученные с помощью моделей Вселенной, необходимо обязательно проверять путем сравнения с реальностью. Нельзя отождествлять само явление с моделью. Нельзя без тщательной проверки, приписывать природе те свойства, которыми обладает модель. Ни одна из моделей не может претендовать на роль точного “слепка” Вселенной. Это говорит о необходимости углубленной разработки моделей неоднородной и не изотропной Вселенной.

Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система, в составе которой как рядовая звезда находится наше Солнце, называется Галактикой.

Число звезд в галактике порядка 1012 (триллиона). Млечный путь - светлая серебристая полоса звезд - опоясывает всё небо, составляя основную часть нашей Галактики. Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно сделать заключение, что солнечная система находится не в центре Галактики, который от нас виден в направлении созвездия Стрельца. Наша Галактика занимает пространство, напоминающее линзу или чечевицу, если смотреть на нее сбоку. Размеры Галактики были замечены по расположению звезд, которые видны на больших расстояниях. Это - цефеиды и горячие гиганты. Диаметр Галактики примерно равен 3000 пк (Парсек (пк) – расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1?.. 1 Парсек = 3,26 светового года = 206265 а.е. = 3*1013 км.) или 100000 световых лет (световой год – расстояние, пройденное светом в течение года), но четкой границы у нее нет, потому что звездная плотность постепенно сходит на нет.

В центре Галактики расположено ядро диаметром 1000-2000 пк – гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и фотографическим наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефеид.

Звезды верхней части главной последовательности, а особенно сверхгиганты и классические цефеиды, составляют более молодые население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Масса нашей галактики оценивается сейчас разными способами и равна 2*1011 масс Солнца (масса Солнца равна 2*1030 кг.) причем 1/1000 ее заключена в межзвездном газе и пыли. Поперечник нашей Галактики составляет 100000 световых лет. Путем кропотливой работы московский астрономом В.В. Кукарин в 1944 г. нашел доказательства спиральной структуры Галактики, причем оказалось, что мы живем в пространстве между двумя спиральными ветвями, бедном звездами.

В некоторых местах на небе в телескоп, а кое- где даже невооруженным глазом, можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Существует два вида звездных скоплений: рассеянные и шаровые.

Рассеянные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические цефеиды.

Размер рассеянных скоплений – несколько парсек. Размер шаровых скоплений с сильной концентрацией звезд к центру – десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних десятки тысяч.

Кроме звезд в состав Галактики входит еще рассеянная материя, чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности. Туманности бывают диффузными (клочковатой формы) и планетарными. Пример: газопылевая туманность в созвездии Ориона и темная пылевая туманность Конская голова.

Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности – 6 пк, масса приблизительно в 100 раз больше массы Солнца.

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Внешний вид галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Эдвин Пауэлла Хаббл (1889-1953), выдающийся американский астроном – наблюдатель, избрал самый простой метод классификации галактик по внешнему виду, и, нужно сказать, что хотя впоследствии другими выдающимися исследователями были внесены разумные предложения по классификации, первоначальная система, выведенная Хабблом, по прежнему остаётся основой классификации галактик.

Хаббл предложил разделить все галактики на 3 вида:

Эллиптические – обозначаемые Е (elliptical);

Спиральные (Spiral);

Неправильные – обозначаемые (irregular).

Эллиптические галактики внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к периферии. Ни каких дополнительных частей у них нет, потому что эллиптические галактики состоят из второго типа звездного населения. Они построены из звезд красных и желтых гигантов, красных и желтых карликов и некоторого количества белых звезд не очень высокой светлости. Отсутствуют бело-голубые сверхгиганты и гиганты, группировки которых можно наблюдать в виде ярких сгустков, придающих структурность системе, нет пылевой материи, которая, в тех галактиках где она имеется, создаёт темные полосы, оттеняющие форму звездной системы.

Внешне эллиптические галактики отличаются друг от друга в основном одной чертой – большим или меньшим сжатием (NGG и 636, NGC 4406, NGC 3115 и др.)

С несколько однообразными эллиптическими галактиками контрастируют спиральные галактики, являющиеся может быть даже самыми живописными объектами во Вселенной. У эллиптических галактик внешний вид говорит о статичности, стационарности. Спиральные галактики, наоборот, являют собой пример динамики формы. Их красивые ветви, выходящие из центрального ядра и как бы теряющие очертания за пределами галактики, указывает на мощное стремительное движение. Поражает также многообразие форм и рисунков ветвей. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающимися сходным симметричным образом и теряющимися в противоположных областях периферии галактики. Однако известны примеры большего, чем двух числа спиральных ветвей в галактике. В других случаях спирали две, но они неравны – одна значительно более развита, чем вторая. Примеры спиральных галактик: М31, NGC 3898, NGC 1302, NGC 6384, NGC 1232 и др.

Перечисленные до сих пор типы галактик характеризовались симметричностью форм, определенным характером рисунка. Но встречаются большое число галактик неправильной формы, без какой-либо закономерности структурного строения. Хаббл дал им обозначение от английского слова irregular – неправильные.

Неправильная форма у галактики может быть вследствие того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого возраста. Есть и другая возможность: галактика может стать неправильной вследствие искажения формы в результате взаимодействия с другой галактикой. По-видимому, эти оба случая встречаются среди неправильных галактик и с этим связано разделение неправильных галактик на 2 подтипа:

Первый подтип характеризуется сравнительно высокой яркостью и сложностью неправильной структуры (NGM 25744, NGC 5204). Французский астроном Вакулер в некоторых галактиках этого подтипа, например, Магеллановых облаках, обнаружил признаки спиральной разрушенной структуры.

Неправильные галактики другого подтипа отличаются очень низкой яркостью. Эта черта выделяет их из среды галактик всех других типов. В то же время она препятствует обнаружению этих галактик, вследствие чего удалось выявить только несколько галактик этого типа, расположенных сравнительно близко (галактика в созвездии Льва.).

Только 3 галактики можно наблюдать невооруженным глазом: Большое Магелланово облако, Малое Магелланово облако и Туманность Андромеды.

Вращающаяся звездная система по истечении некоторого срока должна принять форму шара. Такой вывод следует из теоретических исследований. Он подтверждается на примере шаровых скоплений, которые вращаются и имеют шарообразную форму.

Если же звездная система сплюснута, то это означает, что она вращается. Следовательно, должны вращаться и эллиптические галактики, за исключением тех из них, которые шарообразны. Вращение происходит вокруг оси, которая перпендикулярна главной плоскости симметрии. Галактика сжата вдоль оси своего вращения. Впервые вращение галактик обнаружил в 1914 г. американский астроном Слайфер.

Особый интерес представляют галактики с резко повышенной светимостью. Их принято называть радиогалактиками. Наиболее выдающаяся галактика - Лебедьl. Это слабая двойная галактика с чрезвычайно тесно расположенными друг к другу компонентами, являющимися мощнейшим дискретным источником. Объекты, подобные галактике Лебедьl, безусловно, очень редки в метагалактике, но Лебедьl не единственный объект подобного рода во Вселенной. Они должны находиться на громадном расстоянии друг от друга (более 200Мпс).

Поток проходящего от них радиоизлучения в виду большого расстояния слабее, чем от источника Лебедьl .

Несколько ярких галактик, входящих в каталог NGC, также можно отнести к разряду радиогалактик, потому что их радиоизлучение аналогично сильное, хотя оно значительно уступает по энергии световому. Из этих галактик NGC 1273, NGC 5128, NGC 4782 и NGC 6186 являются двойными. Одиночные - NGC 2623 и NGC 4486.

Когда английские и австралийские астрономы, применив интерференционный метод, в 1963 г. определили с большой точностью положения значительного числа дискретных источников радиоизлучения, они одновременно определили и другие угловые размеры некоторого числа радиоисточников. Диаметры большинства из них исчислялись минутами или десятками секунд дуги, но у 5-ти источников, а именно у 3С48, 3С147, 3С196, 3С273 и 3С286, размеры оказались меньше секунды дуги. Поток их радиоизлучения не уступал по величине радиоизлучению других дискретных источников, превосходящих их по площади излучения в десятки тысяч раз. Эти источники радиоизлучения были названы квазарами. Сейчас их открыто более 1000. Блеск квазара не остается постоянным. Массы квазаров достигают миллиона солнечных масс. Источник энергии квазаров до сих пор не ясен. Есть предположения, что квазары – это исключительно активные ядра очень далеких галактик.

Теоретическое моделирование имеет важное значение так же и для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А.А. Фридман занялся разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянной, а меняется с течением времени. Фридман пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполненная материей, не может находиться в состоянии равновесия: она должна либо расширяться, либо сжиматься. Еще в 1917 г. В.М. Слайфер обнаружил “красное смещение” спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление “красного смещения” наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких). И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду; более далекие галактики обладают и большими скоростями. А после того, как эффект “красного смещения” был обнаружен и в радиодиапазоне, то не осталось никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света, а сверхзвезды и квазары – 0,85 скорости света. Но почему они движутся, расширяются? На галактики постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплотном состоянии. Затем произошел “взрыв”, в результате которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно сменяется сжатием.

Возникли два мнения по поводу состояния Метагалактики до начала расширения. Согласно одному из них первоначальное вещество метагалактики состояло из “холодной” смеси протонов, т.е. ядер атомов водорода, электронов и нейтронов. Согласно второй, температура была очень велика, а плотность излучения даже превосходила плотность вещества. Но после открытия в 1965 г. реликтового излучения А. Пензиасом и Р. Вилсоном, предпочтение было отдано второй теории. После была предпринята попытка представить ход событий на первых стадиях расширения Метагалактики: через 1сек. после начала расширения сверхплотной исходной плазмы плотность вещества снизилась до 500 кг/ см3, а t=1013 Со. В течении следующих 100сек. плотность снизилась до 50 г/см3, температура упала. Объединились протоны и нейтроны => ядра гелия. При t=4000о это продолжалось несколько сотен тысяч лет. Затем, после того, как образовались атомы водорода, началось постепенное формирование горячих водородных облаков, из которых образовались галактики и звезды. Однако в процессе расширения могли сохраниться сгустки сверхплотного дозвездного вещества, а в процессе их распада образовались звезды и галактики. Не исключено, что действовали оба механизма.

Понятие Метагалактика не является вполне ясным. Оно сформировалось на основании аналогии со звездами. Наблюдения показывают, что галактики, подобно звездам, группирующиеся в рассеянные и шаровые скопления, также объединяются в группы и скопления различной численности. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей Вселенной). В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем существуют магнитные и гравитационные поля, и, возможно, невидимые массы веществ.

От наиболее удаленных метагалактических объектов свет идет до нас много миллионов лет. Но все-таки нет оснований утверждать, что метагалактика - это вся Вселенная. Возможно, существуют другие, пока не известные нам метагалактики.

В 1929 г. Хаббл открыл замечательную закономерность, которая была названа “законом Хаббла” или законом “красного смещения”: линии галактик смещены к красному концу, причем смещение тем больше, чем дальше находится галактика.

Объяснив красное смещение эффектом Доплера, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя, безусловно, галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Следовательно, Метагалактика не стационарна.

Открытие расширения Метагалактики свидетельствует о том, что в прошлом Метагалактика была не такой как сейчас и иной станет в будущем, т.е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самым большими скоростями (более 250 000 км/с) обладают некоторые квазары, которые считаются самыми удаленными от нас объектами Метагалактики.

Мы живем в расширяющейся Метагалактике. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик. Метагалактика имеет одну особенность: не существует центра, от которого разбегаются галактики. Удалось вычислить промежуток времени с начала расширения Метагалактики. Он равен 20-13 млрд. лет. Расширение Метагалактики является самым грандиозным из известных в настоящее время явлений природы. Это открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между Метагалактикой и Вселенной, и пытались доказать, что расширение Метагалактики подтверждает религиозное представление о божественности происхождения Вселенной. Но Вселенной известны естественные процессы, по всей вероятности это взрывы. Есть предположение, что расширение Метагалактики также началось с явления, напоминающего колоссальный взрыв вещества, обладающего огромной температурой и плотностью.

Расчеты, выполненные астрофизиками, свидетельствуют о том, что после начала расширения вещество Метагалактики имело высокую температуру и состояло из элементарных частиц (нуклонов) и их античастиц. По мере расширения изменилась не только температура и плотность вещества, но и состав входивших в него частиц, т.е. многие частицы и античастицы аннигилировали, порождая при этом электромагнитные кванты.

Эта теория называется теорией “горячей Вселенной”, когда сверхплотное вещество превратилось в вещество с близкой плотностью к плотности воды. Через несколько часов плотность почти сравнялась с плотностью нашего воздуха, а сейчас, по истечении миллиардов лет, оценка средней плотности вещества в Метагалактике приводит к значению порядка 10-28 кг/м3 .

Великий немецкий ученый, философ Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях – начиная с планетной системы и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, открыв теорию относительности. В статье от 30.06.1905 г., заложившей основы специальной теории относительности, Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических, но также в электромагнитных явлениях.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально новые космологические следствия общей теории относительности раскрыл выдающийся советский математик и физик-теоретик Александр Фридман (1888-1925 гг.). Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте “красного смещения” в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

Существует несколько теорий эволюции:

Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение Вселенной не будет продолжаться вечно, т.к. его остановит гравитация. По этой теории наша Вселенная расширяется в течение 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится и произойдет остановка, а затем она начнёт сжиматься до тех пор, пока вещество опять не сожмется и произойдет новый взрыв.

Теория стационарного взрыва: согласно ей Вселенная не имеет ни начала, ни конца. Она все время пребывает в одном и том же состоянии. Постоянно идет образование нового водоворота, чтобы возместить вещество удаляющихся галактик. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой положил взрыв, будет расширяться до бесконечности, то она постепенно охладится и совсем угаснет.

Но пока ни одна из этих теорий не доказана, т.к. на данный момент не существует каких либо точных доказательств хотя бы одной из них.

Наиболее вероятное значение постоянной Хаббла (коэффициента пропорциональности, связывающего скорости удаления внегалактических объектов и расстояние до них, составляющее 60 км/(с* Мпк), приводит к значению времени расширения метагалактики до современного состояния - 17 млрд. лет.

Список литературы

Климишин И.А. Открытие Вселенной. –М., 1987.

Новиков И.Д. Как взорвалась Вселенная. –М., 1988.

Шкловский И.С. Вселенная, жизнь, разум. –М., 1990.

Полак И.Ф. Как устроена Вселенная. –М., 1979.

Левитан Е.П. Эволюционирующая Вселенная. –М..1993.

Воронцов-Вельяминов Б.А. Галактики, туманности и взрывы во Вселенной. –М., 1983.

В 1948 г. эмигрировавший из СССР в США Г.Гамов (1904–1968) выдвинул гипотезу рождения Вселенной в результате Большого Взрыва . Сейчас эта гипотеза называется теорией горячей Вселенной . Согласно этой теории, приблизительно через 100 сек после Большого Взрыва, создавшего пространство, время, материю и положившего начало расширению и остыванию Вселенной, в ее достаточно горячем веществе, содержащем протоны и нейтроны, при температуре 10 9 К начали протекать термоядерные реакции первичного нуклеосинтеза самых легких (не считая водорода) ядер, в результате которых стали образовываться ядра дейтерия, трития и гелия.

Через 1 млн. лет после рождения Вселенной смесь водорода и гелия, подчиняясь закону всемирного тяготения, стала собираться в сгустки, из которых впоследствии образовались первые звезды и галактики. По теории Г.Гамова вещество, из которого они формировались, должно было состоять на 75% из водорода и на 25% из гелия. По современным оценкам, переход от однородной водородно-гелиевой Вселенной к структурной Вселенной с галактиками и звездами длился от 1-го до 3-х миллиардов лет, а первые звезды могли возникнуть через 200 млн. лет после рождения Вселенной.

По мнению ученых, образование звезд и галактик в расширяющейся Вселенной было обусловлено существованием пространственной неоднородности вещества, возникшей из квантовых флуктуаций материи при рождении Вселенной, и гравитационной неустойчивостью любого неравномерного распределения масс (область пространства с большей плотностью притягивает окружающие массы и таким образом способствует еще большему его уплотнению).

Газопылевые космические облака, из которых возникают звезды, неустойчивы: малые возмущения их плотности могут привести к нарушению гравитационного равновесия. Под влиянием силы всемирного тяготения возмущения будут нарастать, что приведет к разделению облака на отдельные фрагменты, каждый из которых под влиянием гравитации начнет сжиматься, образуя протозвезду . Постепенное сжатие водородно-гелиевых сгущений под действием собственной гравитационной силы приводит к их нагреву до значений температуры, достаточных для возникновения термоядерных реакций синтеза. Дальнейшее сжатие при этом прекращается, т.к. его уравновешивает теперь излучение, из сгустка возникает звезда и начинается термоядерный этап ее эволюции. Около 90% звезд в видимой Вселенной находится на стадии термоядерного синтеза гелия из водорода, потому что именно эта стадия звездной эволюции – самая продолжительная в активной «жизни» звезды.

Рождение звезды обычно скрыто космической пылью, поглощающей излучение звездного ядра. При этом оболочка из пыли нагревается до сотен градусов и в соответствии с этой температурой светит сама в инфракрасном (ИК) диапазоне. Поэтому только с появлением ИК–фотометрии и радиоастрономии стали доступны для наблюдений и изучений явления в газопылевых облаках, имеющих отношение к рождению звезд.

Вещество, израсходованное на образование звезд, частично возвращается в межзвездную среду при их взрывах. Обогащенное тяжелыми элементами, синтезированными в недрах звезд или образовавшимися во время их взрывов, оно может снова включиться в процесс звездообразования. Различают звезды разных поколений в зависимости от того, сколько раз вошедший в их состав межзвездный газ участвовал в формировании звезд. Так, первые звезды во Вселенной возникали из первичного газа, содержащего только водород (75% по массе) и гелий (25% по массе). Звезды последующих поколений образовались из газа, содержащего весь набор тяжелых элементов. Считается, что Солнце – звезда третьего поколения. Так что, все в Солнечной системе, включая и людей, состоит из пепла взорвавшихся звезд. У других звезд также обнаружены планеты: их в настоящее время известно более 100. Планетные системы могли формироваться у звезд второго и последующих поколений из вещества, в котором присутствовали элементы тяжелее гелия.

Диапазон характерных масс звезд составляет 0.1М c –100М c (М c – масса Солнца). Большинство звезд в видимой Вселенной имеет массу меньше, чем Солнце. В звездах с массой М≤0.1М c невозможно термоядерное горение водорода, поэтому они могут светить только за счет постепенного охлаждения их вещества. Обнаружение таких звезд осложнено их низкой светимостью, поэтому возможно, что часть невидимого вещества во Вселенной (скрытая масса ), которое можно обнаружить только по их гравитационного воздействию на соседние объекты, заключена именно в них. По оценкам ученых, вещество, непосредственно наблюдаемое в звездах и газовых туманностях, составляет не более 5% от полной массы Вселенной (при этом на звезды приходится только 1% всей массы Вселенной). Звезды с М≥100М c неустойчивы.

Чем больше масса звезды, тем быстрее она истощает запасы своего ядерного топлива и тем быстрее она стареет. Поэтому массивные звезды с массой, приблизительно в 100 раз превосходящей массу Солнца, живут всего лишь около 10 млн. лет; звезды с массой, в несколько раз превышающей солнечную массу, – сотни миллионов лет; а звезды с массой М~М c светят примерно 10 млрд. лет.

Звезды могут развиваться по отдельности или в системах, состоящих из двух или большего количества звезд.

Звезда, излучающая за счет выделения ядерной энергии, медленно эволюционирует по мере изменения ее химического состава. Наибольшее время она проводит на стадии, когда в ее центральной части горит водород. Большая длительность этого этапа связана, в частности, с тем, что водород является самым калорийным ядерным топливом. При образовании одного ядра гелия (альфа-частицы) из 4-х ядер водорода выделяется примерно 26 МэВ энергии, а при образовании углерода 6 С 12 из 3-х альфа-частиц – только около 7.3 МэВ, т.е. выделение энергии на единицу массы при этом в 10 раз меньше.

После выгорания водорода в центре звезды и образования гелиевого ядра выделение ядерной энергии в нем прекращается, и ядро начинает интенсивно сжиматься. Водород продолжает гореть в тонкой оболочке, окружающей гелиевое ядро. Оболочка при этом расширяется, светимость звезды растет, поверхностная температура уменьшается, и звезда становится красным гигантом (в случае менее массивных звезд) или сверхгигантом (красным или желтым) в случае более массивных звезд. Цвет звезды определяется температурой ее поверхности: чем больше температура поверхности Т, тем выше частота излучения ν согласно формуле

где h – постоянная Планка, а k – постоянная Больцмана. Поэтому красные звезды – самые холодные, а голубые – самые горячие.

Процесс последующей звездной эволюции определяется в основном массой звезды. Образование элементов тяжелее магния возможно только в массивных звездах. Солнце из-за недостаточной массы закончит свою эволюцию на стадии гелиевого горения. К концу своей жизни звезды, аналогичные Солнцу, сбрасывают свою оболочку (планетарную туманность) и превращаются в белых карликов , сжимаясь до размеров Земли или меньше. Белый карлик – горячая звезда, но из-за малых размеров ее практически не видно. Через миллиарды лет белый карлик должен охладиться и превратиться в черного карлика , не излучающего свет. Таким образом, черные карлики – это мертвые остатки звезд.

В массивных звездах после образования железа гравитационное сжатие ядра не удерживается противодавлением излучения, т.к. в результате ядерных реакций, идущих на этом этапе, энергия не выделяется. Элементы тяжелее железа образуются в недрах звезд при захвате ядрами свободных нейтронов или протонов. Так синтезируются тяжелые ядра вплоть до висмута.

Температура в центре красных сверхгигантов может достигать 10 10 К. При такой температуре ядра атомов разваливаются на протоны и нейтроны, протоны поглощают электроны, превращаясь в нейтроны и испуская нейтрино. Как правило, эволюция таких звезд заканчивается мощным взрывом – вспышкой сверхновой . В 1987 г. ученые наблюдали такой взрыв в галактике Большое Магелланово Облако , находящейся от нас на расстоянии 150 тыс. световых лет. В результате вспышки сверхновой состояние звезды кардинально изменяется: она либо полностью разрушается, либо сбрасывает свою внешнюю оболочку, а ее бешено вращающееся (по закону сохранения момента импульса) нейтронное ядро превращается под действием сил гравитационного сжатия в нейтронную звезду , масса которой при размере около 10 км может превышать массу Солнца. Нейтронная звезда состоит из нейтронного газа, внутреннее давление которого противодействует гравитации и останавливает сжатие звезды. Огромные силы давления нейтронного вещества обусловлены тем, что являющиеся фермионами нейтроны по принципу Паули не могут находиться в одном энергетическом состоянии и поэтому при сильном сжатии отталкиваются друг от друга.

Идею о возможности существования во Вселенной нейтронных звезд впервые выдвинул советский физик Л.Д.Ландау (1908–1968) в 1932 г. после того, как был открыт нейтрон. Вращаясь, нейтронные звезды должны импульсами испускать электромагнитное излучение. Поэтому их стали называть пульсарами . В 1967 г. астрономы открыли первую нейтронную звезду, находящуюся в центре Крабовидной туманности , возникшей после взрыва сверхновой в 1054 г. Звезда периодически излучала радиоволны. Одиночные нейтронные звезды проявляют себя обычно как радиопульсары, а нейтронные звезды в двойных звездных системах – как рентгеновские источники. Теряя энергию на излучение, нейтронная звезда должна постепенно замедлять свое вращение. Как следует из теоретических расчетов, масса нейтронной звезды не может превышать массу Солнца более, чем в 3-4 раза.

Механизм перехода сжатия звезды во взрыв, в результате которого межзвездная среда обогащается тяжелыми элементами, образовавшимися в недрах звезд и в процессе самого взрыва, в настоящее время до конца не ясен.

Если масса ядра умирающей сжимающейся звезды превышает массу Солнца в 3 и большее число раз, никакая сила не сможет остановить процесс сжатия. Это поняли ученые к середине 60-х годов ХХ века. Рассчитав структуру звезд и ход их эволюции, они пришли к выводу, что существование устойчивых мертвых звезд с массой М>3М c невозможно. По мере сжатия напряженность гравитационного поля будет нарастать, увеличивая согласно общей теории относительности искривленность пространства и замедляя время вблизи звезды. Когда звезда сожмется до гравитационного радиуса R g

R g = 2 GM / c 2 , (2)

где М – масса звезды, G – гравитационная постоянная, с – скорость света в вакууме, она исчезнет из видимой Вселенной, оставив только свое гравитационное поле и превратившись в черную дыру . Сверхсильное гравитационное притяжение черной дыры не могут преодолеть ни одно известное вещество и ни одно излучение. Поэтому она – невидимая (черная).

Немецкий астрофизик К.Шварцшильд (1873–1916) первым нашел точное решение уравнений общей теории относительности А.Эйнштейна, которое, как оказалось впоследствии, описывает геометрию пространства–времени вблизи черной дыры. Он также вычислил критический радиус, до которого нужно сжать массу, чтобы она стала черной дырой. Этот радиус стал называться радиусом Шварцшильда, или гравитационным радиусом. Черная дыра не имеет поверхности, существует только область пространства вокруг нее, определяемая гравитационным радиусом и невидимая для внешнего наблюдателя. Эта область называется горизонтом событий . Любое тело или излучение, оказавшись вблизи горизонта событий, будет двигаться только внутрь черной дыры. Предполагается, что в черных дырах Вселенная скрывает большую часть своей материи. Если материальный объект попадает в гравитационное поле черной дыры, то он разогревается до очень высоких температур. Поэтому перед окончательным исчезновением в ней он выбрасывает во Вселенную интенсивное рентгеновское излучение.

Черные дыры могут быть окнами в другие Вселенные, пространства и времена, из них могут рождаться Вселенные аналогично возникновению нашей Вселенной из сверхплотного и горячего состояния материи. Известный английский ученый, прикованный судьбой к инвалидной коляске, С.Хокинг (р.1924) выдвинул гипотезу о том, что со временем черные дыры испаряются, излучая в окружающее пространство энергию.

Итак, согласно современной теории эволюции звезд, умирая, каждая звезда становится или белым карликом, или нейтронной звездой, или черной дырой. Белые карлики известны уже много десятилетий и долгое время считались последней стадией эволюции любой звезды. Но затем, как было отмечено выше, были открыты пульсары, доказавшие реальное существование нейтронных звезд. В настоящее время ученые ищут экспериментальные подтверждения наличия во Вселенной черных дыр.

5. Поиски черных дыр .

Поиск черных дыр в космосе является сложной задачей, т.к. никакая информация, в том числе и свет, не может выйти с поверхности таких объектов. Однако во Вселенной существует гравитационное поле черной дыры. Черные дыры поглощают световые лучи, проходящие вблизи нее, и отклоняют лучи, идущие на значительном расстоянии. Также черные дыры могут оказывать гравитационное воздействие на другие космические объекты: удерживать возле себя планеты или образовывать двойные системы с другими звездами. Вещество, поглощаемое черной дырой, разогревается до очень высоких температур и перед тем, как исчезнуть в ней, должно выбрасывать мощное рентгеновское излучение.

Для поиска рентгеновских источников в космосе на околоземную орбиту в 1970 г. был запущен американский спутник «Ухуру», с помощью которого астрономы открыли источники рентгеновского излучения во многих двойных звездных системах. В большинстве таких систем масса невидимой части не превышает 2-х солнечных масс, т.е. является нейтронной звездой. Но имеются двойные звезды с массой невидимой части, которая больше 3-х масс Солнца. Предполагается, что в этом случае темным компонентом является черная дыра.

Первым кандидатом в черные дыры стал невидимый источник рентгеновского излучения Лебедь-Х1, находящийся на расстоянии 8000 световых лет от Земли. Это – двойная звездная система, в которой видимой частью является звезда с массой около 30-и солнечных масс, а невидимый объект имеет массу более 6-и масс Солнца.

Существует гипотеза, что в центре многих галактик находятся черные дыры, массы которых достигают десятков и сотен миллионов солнечных масс. В результате падения вещества на черную дыру должно выделяться огромное количество энергии. Астрономы использовали космический телескоп «Хаббл» и рентгеновскую обсерваторию «Чандра», запущенную НАСА в 1999 г., для того, чтобы найти доказательства существования черных дыр в галактических ядрах. В результате проведенных наблюдений за огромной эллиптической галактикой М87, расположенной на расстоянии 50 млн. световых лет от Земли в созвездии Девы, установлено, что в ее центре имеется вращающийся с огромной скоростью (600 км/с) ионизованный газовый диск радиусом около 3.5 пк (1 пк (парсек) равен 3.3 светового года). Предполагается, что только гравитация невидимого объекта массой 2–3 млн. солнечных масс могла заставить газ вращаться с такой скоростью.

С помощью космической обсерватории «Чандра» было получено рентгеновское изображение центральной области Млечного Пути. В Стрельце А, расположенном в этой области, было зарегистрировано наиболее интенсивное рентгеновское излучение. Во время наблюдений источник этого излучения ярко светился несколько минут, а затем в течение 3 часов возвращался на предыдущий уровень. Быстрые изменения мощности рентгеновского излучения ученые связывают с тем, что вспышка была вызвана приближением вещества к черной дыре.

Кроме этого, в ядре Млечного Пути обнаружены звезды, движущиеся со скоростями более 1000 км/с. В области радиусом 0.1 пк вокруг Стрельца А наблюдается увеличение скоростей звезд по мере приближения к центру. Такие большие скорости можно объяснить только тем, что Стрелец А – черная дыра с массой, равной 2.6 10 6 М c .

Существование черной дыры в центре нашей Галактики не представляет опасности для Земли из-за ее огромной удаленности. Но так как черная дыра питается звездной и другой материей, она может поглотить всю Галактику. Но прежде чем она доберется до Солнечной системы, ей придется проглотить не менее 100 млрд. звезд Млечного Пути.

Один из кандидатов в черные дыры путешествует по нашей Галактике. Его открыли в 2000 г. Ученые полагают, что это массивная двойная звездная система, в которой черная дыра поглощает материю соседней звезды. Удалось определить орбиту этого объекта. Расстояние между ним и Солнцем составляет сейчас 6000 световых лет.

В 1999 г. с помощью обсерватории «Чандра» был обнаружен мощный рентгеновский источник, расположенный на расстоянии 2.5 млрд. световых лет от Земли в центре одной из галактик созвездия Гидры. Предполагают, что он также является черной дырой.

Самыми мощными источниками электромагнитного излучения во Вселенной являются открытые в 1963 г. квазары – квазизвездные радиоисточники. Их размеры больше звезд, но меньше галактик. Диаметр квазара равен приблизительно нескольким световым неделям, а масса – более 10 6 М c . Большинство квазаров расположено на расстояниях 10–15 млрд. световых лет от Земли, т.е. на границе видимой Вселенной. Поэтому мы видим их такими, какими они были, когда Вселенная только начала формироваться. Светимость квазара может быть эквивалентной излучению десятков галактик. В настоящее время открыты тысячи квазаров. Для них характерны мощные движения газа и выбросы струй вещества (джетов) со скоростью, близкой к скорости света. Существует гипотеза о том, что квазары – это гигантские черные дыры с массой около 100 млн. солнечных масс, расположенные в плотных ядрах галактик. Такие массивные черные дыры должны разрушать и захватывать звезды, орбиты которых расположены в непосредственной близости от них. Подтверждением этого является изменение светимости квазаров с характерным периодом менее одного дня.