Первые электростанции в мире и в россии. История АЭС

Первая в мире атомная электростанция

После испытания первой атомной бомбы Курчатов и Доллежаль обсудили возможность создания атомной электростанции, ориентируясь на опыт конструирования и эксплуатации промышленных реакторов. 16 мая 1949 года вышло соответствующее постановление Правительства. Несмотря на кажущуюся простоту перехода от одного ядерного реактора к другому, дело оказалось чрезвычайно сложным. Промышленные реакторы работали при низком давлении воды в рабочих каналах, вода охлаждала урановые блоки и этого было достаточно.

Схема атомной электростанции существенно усложнялась именно тем, что в рабочих каналах требовалось поддерживать высокое давление, чтобы получить пар необходимых параметров для работы турбины Приходилось вводить в активную зону реактора больше конструктивных материалов, что требовало обогащения урана изотопом 235. Чтобы не загрязнять радиоактивностью турбинное отделение АЭС, была применена двухконтурная схема, еще больше усложнявшая электростанцию.

Первый радиоактивный контур включал в себя технологические каналы реактора, насосы для циркуляции воды, трубчатую часть парогенераторов и соединительные трубопроводы первого контура. Парогенератор представляет собою сосуд, рассчитанный на значительное давление воды и пара. В нижней части сосуда размещены пучки тонких трубок, через которые прокачивается вода первого контура с давлением около 100 атмосфер и температурой 300 градусов. Между трубными пучками находится вода второго контура, которая, воспринимая тепло от трубных пучков, нагревается и кипит. Образующийся пар при давлении более 12 атмосфер направляется в турбину. Таким образом, вода первого контура не смешивается в парогенераторе со средой второго контура и он остается «чистым.» Пар, отработавший в турбине, охлаждается в турбинном конденсаторе и превращается в воду, ее снова перекачивают насосом в парогенератор. Так поддерживается циркуляция теплоносителя во втором контуре.

Обычные урановые блоки не были пригодны для АЭС. Пришлось конструировать специальные технологические каналы, состоящие из системы тонкостенных трубок небольшого диаметра, на наружных поверхностях которых размещалось ядерное топливо. Технологические каналы в несколько метров длиною загружались в ячейки графитовой кладки реактора мостовым краном реакторного зала и присоединялись к трубопроводам первого контура съемными деталями. Имелось много других отличий, усложнявших сравнительно небольшую атомную установку для производства электроэнергии.

Когда определились основные характеристики проекта АЭС, о нем доложили Сталину. Он высоко оценил зарождение отечественной атомной энергетики, ученые получили не только одобрение, но и помощь в реализации нового направления.

В феврале 1950 года в Первом Главном управлении, возглавляемом Б. Л, Ванниковым и А. П. Завенягиным, детально были обсуждены предложения ученых, а 29 июля того же года Сталин подписал Постановление Совмина СССР о разработке и сооружении в городе Обнинске АЭС с реактором, получившим условное наименование «АМ.» Проектировал реактор Н.А. Доллежаль со своим коллективом. Одновременно велось проектирование станционного оборудования, другими организациями, а также здания АЭС.

Своим заместителем по научному руководству Обнинской АЭС, Курчатов назначил Д. И. Блохинцева, приказом ПГУ Блохинцеву поручалось не только научное но и организационное руководство строительством и пуском АЭС. Первым директором АЭС был назначен Н. А. Николаев.

В 1952 году велись научные и проектные работы по реактору «АМ» и АЭС в целом. В начале года развернулись работы по подземной части АЭС, строительству жилья и соцкультбыта, подъездных путей, плотины на реке Протве. В 1953 году выполнен основной объем строительных и монтажных работ: возведен реакторный корпус и здание турбогенератора, смонтированы металлоконструкции реактора, парогенераторы, трубопроводы, турбина и многое другое. В 1953 году стройке дан статус важнейшей в Минсредмаше (в 1953 году ПГУ было преобразовано в Министерство среднего машиностроения). Курчатов часто приезжал на строительство, ему построили небольшой деревянный домик в соседнем лесу, где он проводил совещания с руководителями объекта.

В начале 1954 года велась графитовая кладка реактора. Герметичность корпуса реактора заранее испытали чувствительным гелиевым методом. Внутрь корпуса подали газ гелий под небольшим давлением, а снаружи все сварные соединения «ощупали» гелиевым течеискателем, который обнаруживает малые протечки гелия. Во время гелиевых испытаний были выявлены неудачные конструктивные решения и пришлось кое-что переделать. После ремонта сварных соединений и повторной проверки на герметичность внутренние поверхности металлоконструкций тщательно обеспылшю и сдали под кладку.

Работы по графитовой кладке с нетерпением ждут как рабочие, так и руководители. Это своеобразная веха на длинном пути монтажа реактора. Кладка относится к разряду чистых работ и в самом деле требует стерильной чистоты. Даже пыль, попав в реактор, ухудшит его качество. Ряд за рядом укладывают рабочие графитовые блоки, проверяя зазоры между ними и другие размеры. Рабочих теперь не узнать, все они в белой спецодежде и спецобуви, белых шапочках, чтобы волосок не упал. В реакторном зале такая же стерильная чистота, ничего лишнего, влажная уборка почти непрерывно. Кладку ведут быстро, круглосуточно, а закончив работу, сдают придирчивым контролерам. В завершении закрывают и заваривают люки в реактор. Затем приступают к монтажу технологических каналов и каналов управления и защиты реактора (каналы СУЗ) На первой АЭС они доставили много хлопот. Дело в том, что трубки каналов имели очень тонкие стенки, а работали при высоких давлении и температуре. Промышленность впервые осваивала производство и сварку таких тонкостенных труб, отчего имели место протечки воды через неплотности сварки Текущие каналы приходилось менять, технологию их изготовления тоже, все это отнимало время. Были и другие сложности, однако все препятствия преодолели. Начались пусковые работы.

9 мая 1954 года реактор достиг критичности, до 26 июня на разных уровнях мощности проводили наладочные работы на многочисленных системах АЭС. 26 июня в присутствии И. В. Курчатова подали пар на турбину и вели дальнейший подъем мощности. 27 нюня состоялся официальный пуск первой в мире Обнинской АЭС с выдачей электроэнергии в систему Мосэнерго.

Атомная станция имела выходную мощность 5000 киловатт. В реактор устанавливалось 128 технологических каналов и 23 канала СУЗ. Одной загрузки хватало для работы АЭС на полной мощности в течение 80-100 суток. Обнинская АЭС привлекла внимание людей всего мира. На ней побывали многочисленные делегации почти из всех стран. Они хотели своими глазами посмотреть на русское чудо. Не надо каменного угля, нефти или горючего газа, здесь тепло от реактора, скрытого за надежной защитой из бетона и чугуна, приводит в движение турбогенератор и вырабатывает электроэнергию, которой по тем временам было достаточно для нужд города с населением 30–40 тысяч человек, при расходе ядерного топлива около 2 тонн в год.

Пройдут годы и на земле в разных странах появятся сотни АЭС огромной мощности, но все они, как Волга из родника, берут начало на русской земле недалеко от Москвы, в известном всему миру городе Обнинске, где впервые разбуженный атом толкнул лопатки турбины и дал электрический ток под славным русским девизом: «Пусть будет атом рабочим, а не солдатом!»

В 1959 году Георгий Николаевич Ушаков, сменивший Николаева на посту директора Обнинской АЭС, издал книгу - «Первая атомная электростанция.» По этой книге училось целое поколение атомщиков.

Обнинская АЭС еще во времена строительства и пуска превратилась в замечательную школу подготовки строительных и монтажных кадров, научных работников и эксплуатационного персонала. Эту свою роль АЭС выполняла многие десятилетия во время промышленной эксплуатации и многочисленных экспериментальных работ на ней. Обнинскую школу прошли такие известные в атомной энергетике специалисты как: Г. Шашарин, А. Григорьянц, Ю. Евдокимов, М. Колмановский, Б. Семенов, В. Коночкин, П. Палибин, А. Красин и многие другие.

В 1953 году на одном из совещаний министр Минсредмаша СССР В. А. Малышев поставил перед Курчатовым, Александровым и другими учеными вопрос о разработке атомного реактора для мощного ледокола, в котором нуждалась страна, чтобы существенно продлить навигацию в наших северных морях, а потом сделать ее круглогодичной. Крайнему Северу уделялось тогда особое внимание, как важнейшему хозяйственному и стратегическому региону. Прошло 6 лет и первый в мире атомный ледокол «Ленин» вышел в свое первое плавание. Этот ледокол прослужил 30 лет в тяжелых условиях Арктики.

Одновременно с ледоколом строилась атомная подводная лодка (АПЛ) Правительственное решение о ее строительстве было подписано в 1952 году, а в августе 1957 года лодку спустили на воду. Эта первая советская АПЛ получила название - «Ленинский комсомол». Она совершила подледный поход к Северному полюсу и благополучно вернулась на базу.

Из книги Миражи и призраки автора Бушков Александр

ЧАСТЬ ПЕРВАЯ. ЕСТЕСТВОЗНАНИЕ В МИРЕ ДУХОВ.

автора

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Великие загадки мира искусства автора Коровина Елена Анатольевна

Первая в мире женщина-скульптор Судьбе было угодно, чтобы в 1491 году в Болонье в семье богатого и знатного горожанина родилась дочь, которую родители назвали Проперцией. И еще судьбе было угодно, чтобы эта самая Проперция воспылала страстью к… ваянию и живописи.Если вы

Из книги Запрещенная история автора Кеньон Дуглас

Глава 31. «ЭЛЕКТРОСТАНЦИЯ В ГИЗЕ: ТЕХНОЛОГИИ ДРЕВНЕГО ЕГИПТА» Летом 1997 г. в журнал «Атлантис Райзинг» обратился ученый, занимавшийся правительственными исследованиями нелетального акустического оружия. Он сказал, что его команда анализировала Великую пирамиду с

Из книги Охота за атомной бомбой: Досье КГБ №13 676 автора Чиков Владимир Матвеевич

1. Атомная проблема Триумф документов Когда последний советский руководитель Михаил Горбачев начал в конце 80-х годов осуществлять политику гласности, расширив круг разрешенных к публикации произведений, он рассчитывал вдохнуть жизнь в умирающие государственные

Из книги Неизвестный Байконур. Сборник воспоминаний ветеранов Байконура [Под общей редакцией составителя книги Б. И. Посысаева] автора Романов Александр Петрович

Виктор Иванович Васильев ПЕРВАЯ В МИРЕ КОСМИЧЕСКАЯ ПОЧТА Родился 27 ноября 1931 г. в Балаклее Харьковской области. В 1959 г. окончил Ленинградскую Краснознаменную военно-воздушную инженерную академию им. А. Ф. Можайского. На космодроме Байконур проходил службу с 1960 по

Из книги Всемирная история в сплетнях автора Баганова Мария

Первая в мире поэтесса Шумеры оставили миру многочисленные литературные памятники: это гимны богам, восхваления царей, сказания, плачи… Увы, их авторы нам неизвестны. Не можем мы и точно сказать, кем была Пуаби, удостоившаяся столь пышных похорон.Зато многое мы можем

Из книги Победы и беды России автора Кожинов Вадим Валерианович

Глава первая О МЕСТЕ РОССИИ В МИРЕ 1С чисто географической точки зрения проблема вроде бы совершенно ясна: Россия со времени начавшегося в XVI веке присоединения к ней территорий, находящихся восточнее Уральского хребта, являет собой страну, которая частью входит в

Из книги Голосуйте за Цезаря автора Джонс Питер

Атомная теория Некоторые древнегреческие философы, в отличие от Сократа, целиком и полностью разделяли идею о полной зависимости человеческой жизни от физических свойств окружающего мира. Одна из теорий на этот счет имела чрезвычайное значение.Для того чтобы чуть

Из книги Сможет ли Россия конкурировать? История инноваций в царской, советской и современной России автора Грэхэм Лорен Р.

Атомная энергетика Россия является мощным международным игроком в области атомной энергетики. Исторически ее сильные стороны в данной сфере уходят корнями в советскую программу ядерного оружия. Однако и в постсоветский период российское правительство продолжило

Из книги История Дальнего Востока. Восточная и Юго-Восточная Азия автора Крофтс Альфред

Атомная бомба Если Япония нашла абсолютное оружие (термин, обозначающий оружие, от которого нет защиты. - Пер.) в сердце самурая, то США взяли его из первичной энергии вселенной. Восточные ученые знали зловещее значение формулы Эйнштейна E = Mc2. Некоторые ученые расщепили

Из книги Большая война автора Буровский Андрей Михайлович

Из книги Аз Есьм Человек автора Сухов Дмитрий Михайлович

В которой повествуется о мире человеческих переживаний, страстей – эмоций, их месте в духовном мире разных индивидов, особенностях и различиях у разных ЛХТ Про эмоции все знают все. Еще бы! - в отличие от прочих разных человечьих качеств, которые могут быть «скрыты» от

Из книги Памятное. Книга 2. Испытание временем автора Громыко Андрей Андреевич

Литвинов и первая в мире женщина-посол Коллонтай Преемником Чичерина на посту наркома по иностранным делам в 1930 году стал Максим Максимович Литвинов. (Настоящие его имя и фамилия были Макс Валлах.)Он занимал этот пост до 1939 года, когда его сменил В.М. Молотов.В 1941 году

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир
Когда и где была построена первая в мире атомная электростанция?
Первая в мире атомная электростанция (АЭС) была построена в СССР через десять лет после бомбардировки Хиросимы. В этой работе принимали участие практически те же специалисты, что и в создании советской атомной бомбы - И. Курчатов, Н. Доллежаль, А. Сахаров, Ю. Харитон и другие. Строить первую АЭС решено было в Обнинске - здесь уже имелся вполне работоспособный турбогенератор мощностью 5000 кВт. Непосредственно строительством АЭС руководила Обнинская физико-энергетическая лаборатория, основанная в 1947 г. В 1950 г. технический совет из нескольких предложенных вариантов выбрал реактор, разработанный НИИ Химмаш, которым руководил Н. Доллежаль. 27 июня 1954 г. первая в мире АЭС дала промышленный ток. В настоящее время она уже не работает, служит своеобразным музеем. Но опыт, полученный при ее сооружении, был, затем использован при сооружении других, более мощных и совершенных атомных энергоблоков. Атомные электростанции ныне работают не только в нашей стране, но и в США, Франции, Японии и многих других странах.

Что представлял из себя первый реактор мирного назначения?
Принцип действия и устройство реактора разработчикам реактора стали ясны еще в середине 1940-х ГГ.: В металлический корпус помещались графитовые блоки с каналами для урановых блоков и регулирующих стержней - поглотителей нейтронов. Общая масса урана должна была достигать критической, при которой начиналась поддерживаемая цепная реакция деления атомов урана. При этом в среднем на каждую тысячу возникших нейтронов несколько штук вылетали не мгновенно, в момент деления, а чуть позднее и вылетали уже из осколков. Существование этих так называемых запаздывающих нейтронов оказалось решающим для возможности осуществления управляемой цепной реакции.
Хотя общее количество запаздывающих нейтронов составляет всего 0,75%, именно они существенно (примерно в 150 раз) замедляют скорость нарастания нейтронного потока и тем самым облегчают задачу регулирования мощности реактора. За это время, манипулируя поглощающими нейтроны стержнями, можно вмешаться в ход реакции, замедлить ее или ускорить. Кроме того, как выяснилось» поток нейтронов в значительной степени разогревал всю массу реактора, так что его еще иногда называют «атомным котлом».
Эта схема послужила основой для создания первого реактора для атомной электростанции. При строительстве за основу была взята конструкция промышленного реактора. Только вместо урановых стержней предусматривались урановые тепловыводящие элементы - твэлы. Разница между ними заключалась в том, что вода обтекала стержень снаружи, твэл же представлял собой двухстенную трубку. Между стенками располагался обогащенный уран, а по внутреннему каналу протекала вода. Чтобы она не вскипела и не превратилась в пар тут же в твэлах - а это могло вызвать ненормальную работу реактора - вода должна была находиться под давлением в 100 атм. Из коллектора горячая радиоактивная вода текла по трубам в теплообменник-парогенератор, после чего, пройдя через циркулярный насос, возвращалась в коллектор холодной воды. Этот ток назывался первым контуром. Вода (теплоноситель) циркулировала в нем по замкнутому кругу, не выходя наружу. Во втором контуре вода выступала в роли рабочего тела. Здесь она была нерадиоактивна и безопасна для окружающих. Нагревшись в теплообменнике до 190 "С и превратившись в пар с давлением 12 атм., она подводилась к турбине, где и производила свою полезную работу. Покинувший турбину пар должен был конденсироваться и снова направляться в парогенератор. КПД всей энергетической установки составлял 17%.
На АЭС также была тщательно продумана система управления протекающими в реакторе процессами, созданы устройства для автоматического и ручного дистанционного управления регулирующими стержнями, для аварийной остановки реактора, приспособления для замены твэлов.

Побывал на первой в мире атомной электростанции. Еще раз восхитился гениями советских ученых и инженеров, сумевших в тяжелые послевоенные годы создать и ввести в эксплуатацию невиданные ранее энергетические установки.

Строили атомную электростанцию в обстановке строжайшей секретности. Расположена он на территории бывшей секретной лаборатории «В», сейчас это Физико-энергетический институт.

Физико-энергетический институт — не просто режимный объект, а особо режимный. Охрана строже чем в аэропорту. Всю аппаратуру и мобильные телефоны пришлось оставить в автобусе. Внутри люди в военной форме. Поэтому фотографий будет не очень много, только те, что предоставлены штатным фотографом. Ну, и парочка моих, снятых перед проходной.

Немного истории.
В 1945 году США впервые в мире применили атомное оружие, сбросив бомбы на японские города Хиросиму и Нагасаки. На какое-то время весь мир оказался беззащитным перед ядерной угрозой.
В кратчайшие сроки Советский Союз сумел создать и испытать 29 августа 1949 года оружие сдерживание — собственную атомную бомбу. В мире наступило пусть и шаткое, но равновесие.

Но помимо разработки оружия советские ученые показали, что атомная энергия может использоваться и в мирных целях. Для этого была постоена первая в мире атомная электростанция в Обнинске.
Место было выбрано не случайно: ученые-атомщики не должны были летать на самолетах, в то же время Обнинск находится сравнительно недалеко от Москвы. Теплоэлектростанция была построена ранее для обслуживания энергией института.

Оцените сроки, с которыми происходило создание и запуск АЭС.
9 мая 1954 года была осуществлена загрузка активной зоны и запущена самоподдерживающаяся реакция деления ядер урана.
26 июня 1954 года — подача пар на турбогенератор. Курчатов сказал по этому поводу: «С легким паром!» АЭС была включена в сеть Мосэнерго.
25 октября 1954 года — выход атомной электростанции на проектную мощность.

Мощность АЭС была небольшой, всего 5 Мегаватт, но это было колоссальное технологическое достижение.

Все создавалось впервые. Крышка реактора находится на уровне земли, а сам реактор уходит вниз. Всего под зданием 17 метров бетона и различных конструкций.

Все управлялось автоматикой, насколько это было возможно на то время. Из каждого помещения на пульт подавались пробы воздуха, таким образом осуществлялся мониторинг радиационной обстановки.

Первые дни работы были очень тяжелыми. В реакторе происходили течи, требовавшие его аварийных остановок. По ходу работы совершенствовали конструкции и меняли узлы на более надежные.
У сотрудников были переносные дозиметры размером с авторучку.

Но самое главное, что за все время эксплуатации Первой АЭС не было аварий с выбросом радиоактивных веществ или других проблем, связанных с облучением и радиацией.

Сердце АЭС — ее реактор. Загрузка и выгрузка тепловыделяющих элементов происходила при помощи крана. Специалист наблюдал за происходящим в реакторном зале через полуметровое стекло.
Атомная станция в Обнинске проработала 48 лет. В 2002 году ее вывели из эксплуатации, позже ее переоборудовали мемориальный комплекс. Сейчас на крышке реактора можно сфотографироваться, но попасть туда очень сложно.

На Первой АЭС бережно хранят память и каждую страницу истории атомной энергетики. Это не только сама электростанция, но и изотопная медицина, энергетические установки для транспорта, подводных лодок и космических кораблей. Все эти технологии разрабатывались и оттачивались в Обнинске.

Вот так выглядели ядерные энергетические установки «Бук» и «Топаз», которые обеспечивают электричеством те самые космические корабли, которые бороздят просторы вселенной.

После Первой АЭС были другие. Более мощные, с другими техническими решениями, но впереди их была атомная электростанция в Обнинске. Многие решения были использованы в других областях атомной энергетики.

В настоящее время Россия по-прежнему лидирует в атомной энергетике. Основы этого были заложены первопроходцами, строившими когда-то Обнинскую АЭС.

Индивидуальные туры на АЭС не проводятся, а на организованные очередь стоит на месяцы вперед. Мы приехали вместе с ЦППК по новому, недавно разработанному маршруту. Очень надеюсь, что скоро можно будет приобрести билеты в комплексный тур в Обнинск и окрестности. Планы такие есть и они реализуются.

Атомная электростанция (АЭС)

электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (См. Тепловая электростанция) (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (См. Ядерное горючее) (в основном 233 U, 235 U. 239 Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения (рис. 1 ) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт ). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт ) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором (См. Водо-водяной реактор) «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт ).

За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2 . Тепло, выделяющееся в активной зоне (См. Активная зона) реактора 1, отбирается водой (теплоносителем (См. Теплоноситель)) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (См. Тепловыделяющий элемент) (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3 ). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой (См. Биологическая защита), Теплообменник и, Насос ы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах (См. Корпусной реактор) ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах (См. Канальный реактор) ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт ) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт ) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт ) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235 U, но и сырьевые материалы 238 U и 232 Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.-Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.

С. П. Кузнецов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Атомная электростанция" в других словарях:

    Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератором энергии на АЭС является атомный реактор. Синонимы: АЭС См. также: Атомные электростанции Электростанции Ядерные реакторы Финансовый словарь… … Финансовый словарь

    - (АЭС) электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1 я в мире АЭС мощнностью 5 МВт была… … Большой Энциклопедический словарь