Парадокс близнецов (мысленный эксперимент): объяснение. Парадокс близнецов или парадокс часов Парадокс близнецов эйнштейна

Так называемый "парадокс часов" был сформулирован (1912 г., Поль Ланжевен) через 7 лет после создания специальной теории относительности и указывает на некоторые "противоречия" в использовании релятивистксго эффекта замедления времени.. Для удобства речи и для "большей наглядности" парадокс часов формулируют также как "парадокс близнецов". Я также использую эту формулировку. Первоначально парадокс активно обсуждался в научной литературе и особенно много — в популярной. В настоящее время парадокс близнецов считается полностью разрешенным, не содержит никаких необъясненных проблем, и практически исчез со страниц научной и даже популярной литературы.

Я привлекаю ваше внимание к парадоксу близнецов потому, что он, вопреки сказанному выше, "все еще содержит" необъясненные проблемы и не только "не разрешен", но и в принципе не может быть разрешен в рамках теории относительности Эйнштейна, т.е. это парадокс не столько "парадокс близнецов в теории относительности", сколько "парадокс самой теории относительности Эйнштейна".

Суть парадокса близнецов состоит в следующем. Пусть П (путешественник) и Д (домосед) — братья-близнецы. П отправляется в длительное космическое путешествие, а Д остается дома. Через некоторое время П возвращается. Основную часть пути П движется по инерции, с постоянной скоростью (время на разгон, торможение, остановки пренебрежимо мало по сравнению с общим временем путешествия и им пренебрегаем). Движение с постоянной скоростью относительно, т.е. если П удаляется (приближается, покоится) относительно Д , то и Д также удаляется (приближается, покоится) относительно П — назовем это симметрией близнецов. Далее, в соответствии с СТО, время для П , с точки зрения Д , течет медленнее, чем собственное время Д , т.е. собственное время путешествия П меньше, времени ожидания Д . В этом случае говорят, что по возвращению П моложе Д . Это утверждение, само по себе, не является парадоксом, это следствие релятивистского замедления времени. Парадокс же состоит в том, что Д , в силу симметрии, может, с таким же правом , считать себя путешественником, а П домоседом, и тогда Д моложе П .

Общепринятое сегодня (каноническое) разрешение парадокса сводится к тому, что ускорениями П нельзя пренебрегать, т.е. его система отсчета не является инерциальной, в его системе отсчета временами возникают силы инерции, и следовательно — никакой симметрии нет. Кроме того, в системе отсчета П ускорение эквивалентно появлению гравитационного поля, в котором время также замедляется (это уже на основании общей теории относительности). Таким образом, время П замедляется как в системе отсчета Д (по СТО, когда П движется по инерции), так и в системе отсчета П (по ОТО, когда он ускоряется), т.е. замедление времени П становится абсолютным. Окончательный вывод : П , по возвращению, моложе Д , и это не является парадоксом!

Таково, повторяем, каноническое разрешение парадокса близнецов. Однако, во всех известных нам подобных рассуждениях не учитывается один "маленький" нюанс — релятивистский эффект замедления времени это КИНЕМАТИЧЕСКИЙ ЭФФЕКТ (в статье Эйнштейна первая часть, где выводится эффект замедления времени, так и называется "Кинематическая часть"). Применительно к нашим близнецам это означает, что, во-первых, есть только двое близнецов и НЕТ НИЧЕГО БОЛЕЕ, в частности, нет абсолютного пространства, и во-вторых — близнецы (читай — эйнштейновские часы) не имеют массы. Это необходимые и достаточные условия формулировки парадокса близнецов. Любые дополнительные условия приводят к "другому парадоксу близнецов". Разумеется, можно формулировать и затем разрешать "другие парадоксы близнецов", но тогда надо, соответственно, использовать "другие релятивистские эффекты замедления времени", например, сформулировать и доказать , что релятивистский эффект замедления времени имеет место только в абсолютном пространстве, или только при условии, что часы имеют массу и т.п. Как известно, ничего подобного в эйнштейновской теории нет.

Пройдемся снова по каноническим доказательствам. П время от времени ускоряется... Ускоряется относительно чего? Только относительно другого близнеца (ничего другого просто нет. Однако, во всех канонических рассуждениях по умолчанию предполагается существование еще одного "действующего лица", которого нет ни в формулировке парадокса, ни в теории Эйнштейна, — абсолютного пространства, и тогда П ускоряется относительно этого абсолютного пространства, тогда как Д покоится относительно этого же абсолютного пространства — налицо нарушение симметрии). Но кинематически ускорение относительно так же, как и скорость, т.е. если близнец-путешественник ускоряется (удаляется, приближается или покоится) относительно своего брата, то и брат-домосед, точно так же, ускоряется (удаляется, приближается или покоится) относительно своего брата-путешественника, — симметрия и в этом случае не нарушается (!) . Никакие силы инерции или гравитационные поля в системе отсчета ускоренного брата не возникают также и по причине отсутствия массы у близнецов. По этой же причине неприменима здесь и общая теория относительности. Таким образом симметрия близнецов не нарушается, и парадокс близнецов остается неразрешенным . в рамках эйнштейновской теории относительности. В защиту такого вывода можно привести и чисто философский довод: кинематический парадокс должен разрешаться кинематически , и негоже привлекать для его разрешения другие, динамические теории, как это делаетcя в канонических доказательствах. Замечу в заключение, что парадокс близнецов — это не физический парадокс, но парадокс нашей логики (апория типа апорий Зенона), применяемой к анализу конкретной псевдофизической ситуации. Это, в свою очередь, означает, что любые аргументы типа возможности или невозможности технической реализации такого путешествия, возможной связи между близнецами посредством обмена световыми сигналами с учетом эффекта Доплера и т.п., также не должны привлекаться для разрешения парадокса (в частности, не греша против логики , можем считать время разгона П от нуля до крейсерской скорости, время разворота, время торможения при подлете к Земле сколь угодно малыми, даже "мгновенными").

С другой стороны, сама теория относительности Эйнштейна указывает на еще один, совершенно иной аспект парадокса близнецов. В той же первой статье по теории относительности (СНТ, т.1, с.8) Эйнштейн пишет: "Мы должны обратить внимание на то, что все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях (курсив Эйнштейна)". (Мы, в определенном смысле, идем дальше Эйнштейна, полагая одновременность событий необходимым условием реальности событий .) Применительно к нашим близнецам это означает следующее: относительно каждого из них его брат всегда одновременен с ним (т.е. реально существует), что бы с ним ни происходило. Это не означает, что время, прошедшее от начала путешествия, для них одинаково, когда они находятся в разных точках пространства, но абсолютно необходимо должно быть одинаковым, когда они находятся в одной точке пространства. Последнее означает, что их возраст был одинаков в момент начала путешествия (они же близнецы), когда они находились в одной точке пространства, далее их возраст взаимно менялся во время путешествия одного из них в зависимости от его скорости (теорию относительности никто не отменил), когда они находились в разных точках пространства, и снова стал одинаков в конце путешествия, когда они снова оказались в одной точке пространства.. Разумеется, они оба постарели, но процесс старения мог проходить у них по разному, с точки зрения одного или другого, но в конечном счете, они состарились одинаково. Заметим, что эта новая ситуация для близнецов попрежнему симметрична.. Теперь, с учетом последних замечаний, парадокс близнецов становится качественно иным — принципиально неразрешимым в рамках специальной теории относительности Эйнштейна.

Последнее (совместно с целым рядом подобных "претензий" к СТО Эйнштейна, см. главу XI нашей книги или аннотацию к ней в статье "Математические начала современной натуральной философии" на этом сайте) неизбежно приводит к необходимости пересмотра специальной теории относительности. Я не рассматриваю свою работу как опровержение СТО и, тем более, не призываю от неё отказаться вообще, но я предлагаю её дальнейшее развитие, предлагаю новую "Специальную теорию относительности (СТО* — новая редакция)", в которой, в частности, "парадокса близнецов" просто нет как такового (для тех, кто еще не познакомился со статьей "«Специальные» теории относительности", сообщаю, что в новой специальной теории относительности время замедляется , только когда подвижная инерциальная система приближается к неподвижной, и время ускоряется , когда подвижная система отсчета удаляется от неподвижной, и в итоге — ускорение времени в первой половине пути (удаление от Земли) компенсируется замедлением времени во второй половине (приближение к Земле), и нет никаких замедленных старений близнеца-путешественника, никаких парадоксов. Путешественники будущего могут не опасаться, по возвращению, попасть в отдаленное будущее Земли! ). Построены также две принципиально новые теории относительности, не имеющие аналогов, — "«Специальная общая» теория относительноси (СОТО)" и "Кватерная Вселенная" (модель Вселенной как "самостоятельная теория относительности"). Статья "«Специальные» теории относительности" опубликована на этом сайте. Я посвятил эту статью предстоящему 100-летию теории относительности . Приглашаю вас высказаться по поводу моих идей, а также по поводу теории относительности в связи с её 100-летием.

Мясников Владимир Макарович [email protected]
Сентябрь 2004 г.

Дополнение (Добавлено октябрь 2007)

"Парадокс" близнецов в СТО*. Никаких парадоксов!

Итак, симметрия близнецов является неустранимой в задаче о близнецах, что в эйнштейновской СТО приводит к неразрешимому парадоксу: то становится очевидным, что модифицированная СТО без парадокса близнецов должна давать результат Т (П ) = Т (Д ) что, кстати, полностью соответствует нашему здравому смыслу. Именно такие выводы получаются в СТО* - новая редакция.

Напомню, что в СТО*, в отличие от эйнштейновской СТО, время замедляется, только когда подвижная система отсчета приближается к неподвижной, и ускоряется, когда подвижная система отсчета удаляется от неподвижной. Формулируется это так (см. , формулы (7) и (8)):

где V - абсолютная величина скорости

Уточним, далее, понятие инерциальной системы отсчета, которое учитывает неразрывное единство пространства и времени в СТО*. Я определяю инерциальную систему отсчета (см. Теория относительности, новые подходы, новые идеи. или Пространство и эфир в математике и физике.) как точку отсчета и её окрестность, все точки которой определены из точки отсчета и пространство которой однородно и изотропно. Но неразрывное единство пространства и времени с необходимостью требует, чтобы точка отсчета, зафиксированная в пространстве, была также зафиксирована и во времени, иначе говоря - точка отсчета в пространстве должна быть и точкой отсчета времени.

Так, я рассматриваю две неподвижные системы отсчета, связанные с Д : неподвижную систему отсчета в момент старта (система отсчета провожающего Д ) и неподвижную систему отсчета в момент финиша (система отсчета встречающего Д ). Отличительной особенностью этих систем отсчета является то, что в системе отсчета провожающего Д время течет от точки отсчета в будущее, а путь, пройденный ракетой с П растет, независимо от того куда и как она движется, т.е. в этой системе отсчета П удаляется от Д и в пространстве и во времени. В системе отсчета встречающего Д - время течет из прошлого к точке отсчета и момент встречи приближается, а путь ракеты с П до точки отсчета уменьшается, т.е. в этой системе отсчета П приближается к Д и в пространстве, и во времени.

Вернемся к нашим близнецам. Напоминаю, что я рассматриваю задачу о близнецах как логическую задачу (апорию типа апорий Зенона) в псевдофизических условиях кинематики, т.е. считаю, что П движется все время с постоянной скоростью, полагая время на ускорение при разгоне, торможении и т.п. пренебрежимо малым (нулевым).

Два близнеца П (путешественник) и Д (домосед) обсуждают на Земле предстоящий полет П к звезде Z , находящейся на расстоянии L от Земли, и обратно, с постоянной скоростью V . Расчетное время полета, от старта на Земле до финиша на Земле, для П в его системе отсчета равно T = 2L / V . Но в системе отсчета провожающего Д П удаляется и, следовательно, его время полета (время ожидания его на Земле), равно (см. (!!)), и это время значительно меньше T , т.е. время ожидания меньше времени полета! Парадокс? Разумеется, нет, поскольку этот совершенно справедливый вывод "остался" в системе отсчета провожающего Д . Теперь Д встречает П уже в другой системе отсчета встречающего Д , а в этой системе отсчета П приближается, и время его ожидания равно, в соответствии с (!!!), , т.е. собственное время полета П и собственное время ожидания Д совпадают. Никаких противоречий!

Предлагаю рассмотреть конкретный (разумеется, мысленный) "эксперимент", расписанный по времени для каждого близнеца, и в любой системе отсчета. Для определенности, пусть звезда Z удалена от Земли на расстояние L = 6 световых лет. И пусть П на ракете летит туда и обратно с постоянной скоростью V = 0,6 c . Тогда его собственное время полета T = 2L / V = 20 лет. Вычислим также и (см. (!!) и (!!!)). Договоримся также, что с интервалом в 2 года, в контрольные моменты времени, П будет посылать сигнал (со скоростью света) на Землю. "Эксперимент" состоит в регистрации времени приема сигналов на Земле, их анализе и сравнения с теорией.

Все данные измерений моментов времени приведены в таблице:

1 2 3 4 5 6 7
0
2
4
6
8
10
12
14
16
18
20
0
1
2
3
4
5
6
7
8
9
10
0
1,2
2,4
3,6
4,8
6,0
4,8
3,6
2,4
1,2
0
0
2,2
4,4
6,6
8,8
11,0
10,8
10,6
10,4
10,2
10,0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
-20,0
-16,8
-13,6
-10,4
-7,2
-4,0
-3,2
-2,4
-1,6
-0,8
0
0
3,2
6,4
9,6
12,8
16,0
16,8
17,6
18,4
19,2
20,0

В столбцах с номерами 1 - 7 приводятся: 1. Контрольные моменты времени (в годах) в системе отсчета ракеты . Эти моменты фиксируют интервалы времени от момента старта, или показания часов на ракете, на которых установлен "ноль" в момент старта. Контрольные моменты времени определяют на ракете моменты посылки сигнала на Землю. 2. Те же контрольные моменты времени, но в системе отсчета провожающего близнеца (где "ноль" также установлен на момент старта ракеты). Они определяются по (!!) с учетом . 3. Расстояния от ракеты до Земли в световых годах в контрольные моменты времени или время распространения соответствующего сигнала (в годах) от ракеты до Земли 4. в системе отсчета провожающего близнеца . Определяется как контрольный момент времени в системе отсчета провожающего близнеца (столбец 2 3 ). 5. Те же контрольные моменты времени, но теперь в системе отсчета встречающего близнеца . Особенность этой системы отсчета в том, что теперь "ноль" времени определяется в момент финиша ракеты, и все контрольные моменты времени оказываются в прошлом. Приписываем им знак "минус", и с учетом неизменности направления времени (от прошлого к будущему) меняем их последовательность в столбце на противоположный. Абсолютные значения этих моментов времени находятся по соответствующим значениям в системе отсчета провожающего близнеца (столбец 2 ) умножением на (см. (!!!)). 6. Момент приема на Земле соответствующего сигнала в системе отсчета встречающего близнеца . Определяется как контрольный момент времени в системе отсчета встречающего близнеца (столбец 5 ) плюс соответствующее время распространения сигнала от ракеты до Земли (столбец 3 ). 7. Реальные моменты времени приема сигнала на Земле. Дело в том, что Д неподвижен в пространстве (на Земле), но движется в реальном времени, и в момент приема сигнала он уже находится не в системе отсчета провожающего близнеца , но в системе отсчета момента времени приема сигнала . Как определить этот момент реального времени? Сигнал, по условию, распространяется со скоростью света, а это значит, что два события А = {Земля в момент приема сигнала} и В = {точка пространства, в которой находится ракета в момент отправки сигнала} (напоминаю, что событием в пространстве-время называется точка в определенный момент времени) являются одновременными , т.к. Δx = c Δt , где Δx - пространственное расстояние между событиями, а Δt - временнОе, т.е. время распространения сигнала от ракеты до Земли (см. определение одновременности в "Специальные" теории относительности , формула (5)). А это, в свою очередь, означает, что Д , с равным правом, может считать себя как в системе отсчета события А, так и в системе отсчета события В. В последнем случае ракета приближается, и в соответствии с (!!!), все интервалы времени (до этого контрольного момента) в системе отсчета провожающего близнеца (столбец 2 ) следует умножить на и затем прибавить соответствующее время распространения сигнала (столбец 3 ). Сказанное справедливо для любого контрольного момента времени, включая финальный, т.е. момент финиша путешествия П . Так вычисляется столбец 7 . Естественно, реальные моменты приема сигнала не зависят от способа их вычисления, именно об этом говорит фактическое совпадение столбцов 6 и 7 .

Рассмотренный "эксперимент" только подтверждает основной вывод о том, что собственное время полета близнеца-путешественника (его возраст) и собственное время ожидания близнеца-домоседа (его возраст) совпадают и при этом нет никаких противоречий! "Противоречия" возникают лишь в некоторых системах отсчета, например, в системе отсчета провожающего близнеца , но это никак не влияет на окончательный результат, поскольку в этой системе отсчета близнецы в принципе не могут встретиться, тогда как в системе отсчета встречающего близнеца , где близнецы реально встречаются, уже никаких противоречий нет. Повторяю еще раз: Путешественники будущего могут не опасаться, по возвращению на Землю, попасть в её отдаленное будущее!

Октябрь 2007 г.

Сначала давайте разберемся, кто такие двойняшки, а кто такие близнецы. И те, и другие рождаются у одной матери практически одновременно. Но если у двойняшек может быть разный рост, вес, черты лица и характер, то близнецы практически неотличимы. И этому есть строгое научное объяснение.

Дело в том, что при рождении двойни процесс оплодотворения мог пойти двумя путями: либо яйцеклетку оплодотворили одновременно два сперматозоида, либо уже оплодотворенная яйцеклетка разделилась надвое, и каждая ее половинка стала развиваться в самостоятельный плод. В первом случае, о чем не трудно догадаться, рождаются отличные друг от друга двойняшки, во втором - абсолютно похожие один на другого монозиготные близнецы. И хотя эти факты ученым известны давно, причины, провоцирующие появление близнецов, пока до конца не выяснены.

Правда, замечено, что любое стрессовое воздействие может привести к спонтанному делению яйцеклетки и появлению двух одинаковых эмбрионов. Именно этим объясняется увеличение числа рождений близнецов в периоды войн или эпидемий, когда организм женщины испытывает постоянную тревогу. Кроме того, геологические особенности местности тоже влияют на статистику близнецов. Они, например, рождаются чаще в местах с повышенной биопатогенной активностью или в районах рудных месторождений...

Многие люди описывают неопределенное, но постоянное ощущение, будто когда-то у них был близнец, который исчез. Исследователи считают это утверждение не столь странным, как может показаться на первый взгляд. Сейчас уже доказано, что при зачатии развивается гораздо больше близнецов - и однояйцевых, и просто двойняшек, - чем рождается на свет. Исследователи считают, что от 25 до 85% беременностей начинаются с образования двух эмбрионов, но заканчивается рождением одного ребенка.

Вот всего два из тех сотен и тысяч, известных медикам, примеров, которые подтверждают этот вывод...

Тридцатилетнему Морису Томкинсу, жаловавшемуся на частые головные боли, поставили неутешительный диагноз: опухоль мозга. Было решено проводить операцию. Когда же опухоль вскрыли, хирурги остолбенели: это оказалась не злокачественная опухоль, как предполагалось ранее, а не рассосавшиеся остатки тела брата-близнеца. Об этом свидетельствовали обнаруженные в мозгу волосы, кости, мышечная ткань...

Аналогичное образование, только уже в печени, обнаружили у девятилетней школьницы из Украины. Когда опухоль, разросшуюся до размеров футбольного мяча, разрезали, то перед глазами удивленных медиков предстала ужасная картина: изнутри торчали кости, длинные волосы, зубы, хрящи, жировые ткани, куски кожи...

То, что значительная часть оплодотворенных яйцеклеток, действительно, начинают свое развитие с двух зародышей, подтвердили и ультразвуковые исследования протекания беременности у десятков и сотен женщин. Так, в 1973 году американский врач Льюис Хелман сообщил, что из 140 обследованных им рискованных беременностей 22 начинались с двух зародышевых сумок - на 25% больше, чем ожидалось. В 1976 году доктор Сальватор Леви из Брюссельского университета опубликовал свои поразительные статистические данные об ультразвуковых исследованиях 7000 беременных женщин. Наблюдения, проводившиеся в первые 10 недель беременности показали, что в 71% случаев было два зародыша, но при этом рождался только один ребенок. По мнению Леви, второй зародыш обычно без следа исчезал к третьему месяцу беременности. В большинстве случаев, считает ученый, он поглощается материнским организмом. Некоторые ученые высказывают предположение, что, возможно, это естественный путь удаления поврежденного зародыша, благодаря чему сохраняется здоровый.

Приверженцы другой гипотезы объясняют этот феномен тем, что многоплодная беременность заложена в природе всех млекопитающих. Но у крупных представителей класса, в связи с тем, что они рожают более крупных детенышей, на стадии формирования эмбриона она переходит в одноплодную. Еще дальше пошли в своих теоретических построениях ученые, которые утверждают следующее: «да, действительно, оплодотворенная яйцеклетка всегда формирует два зародыша, из числа которых только один, наиболее сильный, выживает. Но другой зародыш вовсе не рассасываются, а поглощаются их выжившим собратом». То есть, на первых этапах беременности в чреве женщины совершается самый настоящий эмбриональный каннибализм. В качестве главного аргументам пользу этой гипотезы при водится тот факт, что на ранних стадиях беременности эмбрионы-близнецы фиксируется гораздо чаще, чем в более поздние периоды. Прежде считалось, что это ошибки ранней диагностики. Теперь же, судя по выше приведенным фактам, это расхождение в статистических данных полностью нашло объяснение.

Иногда исчезнувший близнец дает о себе знать совсем уж оригинальным способом. Когда Патриция Мак-Донелл из Англии забеременела, то узнала, что у нее не один тип крови, а два: 7% крови группы А и 93% - группы 0. Кровь группы А была ее. Но большая часть крови, циркулировавшей по телу Патриции, принадлежала не рожденному брату-близнецу, поглощенному ею в утробе матери. Тем не менее, спустя десятилетия, его останки продолжали вырабатывать свою кровь.

Массу любопытных особенностей демонстрируют близнецы и во взрослом состоянии. Убедиться в этом можно на следующем примере.

«Близнецы Джимы» были разделены сразу после рождения, выросли отдельно и стали сенсацией, когда нашли друг друга. Обоих звали одинаково, оба были женаты на женщинах с именем Линда, с которыми развелись. Когда оба женились во второй раз, у их жен были тоже одинаковое имя - Бетти. У каждого была собака по кличке Той. Оба работали представителями шерифа, а также в «Макдональдсе» и на бензоколонках. Отпуска они проводили на пляже Санкт-Петербурга (Флорида) и ездили на «шевроле». Оба грызли ногти и пили пиво «Miller», а также поставили белые скамейки около дерева в своих садах.

Психолог Томас Дж. Бохард-младший сходству и различию в поведении близнецов посвятил всю свою жизнь. На основании наблюдений за близнецами, с самого раннего детства воспитывавшихся в разных семьях и в различной обстановке, он пришел к выводу, что наследственность играет гораздо большую роль, чем предполагалось ранее, в формировании особенностей личности, ее интеллекта и психики, в восприимчивости к определенным заболеваниям. У многих из обследованных им близнецов, несмотря на существенную разницу в воспитании, обнаружились очень похожие черты поведения.

Например, Джека Юфа и Оскара Сторха, родившихся в 1933 году на Тринидаде, разлучили сразу же после их появления на свет. Они встречались только раз в возрасте чуть старше 20 лет. Им было по 45, когда они вновь увиделись у Бохарда в 1979 году. Оба оказались с усами, в одинаковых по стилю очках в тонкой металлической оправе и голубых рубашках с двойными карманами и погонами. Оскар, воспитанный матерью-немкой и ее семьей в католической вере, во времена фашизма вступил в Гитлерюгенд. Джека вырастил на Тринидаде отец-еврей, и позже он жил в Израиле, где работал в киббуце и служил в израильском флоте. Джек и Оскар обнаружили, что, несмотря на разные условия жизни, у них одинаковые привычки. Например, обоим нравилось громко читать в лифте просто для того, чтобы посмотреть на реакцию окружающих. Оба читали журналы от конца к началу, отличались суровым нравом, носили на запястье резиновую ленту и спускали воду в туалете перед тем, как воспользоваться им. Поразительно похожее поведение продемонстрировали и другие изучаемые пары близнецов. Бриджит Харрисон и Дороти Лоу, родившиеся в 1945 году и разделенные, когда им была неделя от роду, к Бохарду пришли с часами и браслетами на одной руке, двумя браслетами и с семью кольцами - на другой. Позже выяснилось, что у каждой из сестер есть кошка по кличке Тигр, что сына Дороти зовут Ричард Эндрю, а сына Бриджит - Эндрю Ричард. Но более впечатляющим оказался тот факт, что обе, когда им было по пятнадцать лет, вели дневник, а потом, почти одновременно, бросили это занятие. Дневники их были одного типа и цвета. Причем, хотя содержание записей различалось, они велись или пропускались в одни и те же дни. Отвечая на вопросы психологов, многие пары заканчивали ответы в одно и то же время и при ответах часто делали одинаковые ошибки. В ходе исследований выяснилось сходство близнецов в манере говорить, жестикулировать, двигаться. Было установлено также, что однояйцевые близнецы даже спят одинаково, и фазы сна у них совпадают. Предполагается, что у них могут развиваться и одинаковые болезни.

Завершить же этот этюд о близнецах можно словами Луиджи Гелда, который сказал: «Если у одного есть дырка в зубе, то и у другого она в том же зубе или скоро появится».


Хотите удивить всех своей молодостью? Отправляйтесь в длительный космический полет! Хотя, когда вернетесь, удивляться, скорее всего, уже будет некому...

Давайте проанализируем историю двух братьев-близнецов.
Один из них - «путешественник» отправляется в космический полёт (где скорость движения ракет околосветовая), второй - «домосед» остаётся на Земле. А вопрос-то в чем? - в возрасте братьев!
После космического путешествия останутся они одного возраста, или кто-то из них (и кто именно)станет старше?

Еще в 1905 г. Альбертом Эйнштейном в Специальной Теории Относительности (СТО) был сформулирован эффект релятивистского замедления времени , согласно которому часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями. Причем заметно это замедление при околосветовых скоростях.

Именно после выдвижения Эйнштейном СТО французским физиком Полем Ланжевеном был сформулирован «парадокс близнецов» (или иначе "парадокс часов") . Парадокс близнецов (иначе "парадокс часов") – это мысленный эксперимент, с помощью которого пытались объяснить возникшие противоречия в СТО.

Итак, вернемся к братьям –близнецам!

Домоседу должно показаться, что часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа.
А с другой стороны, относительно путешественника двигается Земля, поэтому он считает, что отстать должны часы домоседа.

Но, не могут оба брата быть одновременно один старше другого!
Вот в этом и парадокс …

С точки зрения существовавшей на время возникновения «парадокса близнецов» в данной ситуации возникало противоречие.

Однако, парадокса, как такового, в действительности не существует, т.к. надо помнить, что СТО - это теория для инерциальных систем отсчёта! А, система отсчёта по крайней мере одного из близнецов не было инерциальной!

На этапах разгона, торможения или разворота путешественник испытывал ускорения, и поэтому к нему в эти моменты неприменимы положения СТО.

Здесь надо пользоваться Общей Теорией Относительности , где с помощью расчетов доказывается, что:

Вернемся , к вопросу о замедлении времени в полете!
Если свет проходит какой либо путь за время t.
Тогда продолжительность полета корабля для «домоседа» будет Т= 2vt/c

А для «путешественника» на космическом корабле по его часам (основываясь на преобразовании Лоренца) пройдет всего To=Tумноженное на корень квадратный из (1-v2/c2)
В результате, расчеты (в ОТО) величины замедления времени с позиции каждого брата покажут, что брат- путешественник окажется моложе своего брата-домоседа.




Для примера можно просчитать мысленно полёт к звёздной системе Альфа Центавра, удалённой от Земли на расстояние в 4.3 световых года (световой год – расстояние, которое проходит свет за год). Пусть время измеряется в годах, а расстояния в световых годах.

Пусть половину пути космический корабль двигается с ускорением, близким к ускорению свободного падения, а вторую половину - с таким же ускорением тормозит. Проделывая обратный путь, корабль повторяет этапы разгона и торможения.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с подобным ускорением может совершить путешествие к галактике Андромеды (туда и обратно). На Земле за время такого полёта пройдёт около 5 млн лет.

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет.

Важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Уже проведенные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода часов при их движении подтверждают теорию относительности.

Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

Основным назначением мысленного эксперимента под названием «Парадокс близнецов» было опровержение логичности и обоснованности специальной теории относительности (СТО). Стоит сразу оговориться, что ни о каком парадоксе на самом деле речи не идёт, а само слово фигурирует в этой теме потому, что суть мысленного эксперимента была изначально неправильно воспринята.

Основная идея СТО

Парадокс (парадокс близнецов) гласит, что «неподвижный» наблюдатель воспринимает процессы движущихся объектов как замедляющиеся. В соответствии с той же теорией инерциальные системы отсчёта (системы, в которых движение свободных тел происходит прямолинейно и равномерно либо они находятся в состоянии покоя) равноправны относительно друг друга.

Парадокс близнецов: кратко

С учётом второго постулата возникает предположение о противоречивости Чтобы разрешить эту проблему наглядно, было предложено рассмотреть ситуацию с двумя братьями-близнецами. Одного (условно - путешественника) отправляют в космический полёт, а другого (домоседа) оставляют на планете Земля.

Формулировка парадокса близнецов при таких условиях обычно звучит так: по оценке домоседа, время на тех часах, которые находятся у путешественника, движется медленнее, а значит, когда он вернётся, его (путешественника) часы будут отставать. Путешественник, напротив, видит, что относительно него движется Земля (на которой находится домосед со своими часами), и, с его точки зрения, именно у его брата время будет идти более медленно.

В действительности оба брата находятся в равных условиях, а значит, когда они окажутся вместе, то на их часах время будет одинаковым. Одновременно по теории относительности отставать должны именно часы брата-путешественника. Такое нарушение очевидной симметричности было рассмотрено как несогласованность положений теории.

Парадокс близнецов из теории относительности Эйнштейна

В 1905 году Альберт Эйнштейн вывел теорему, которая гласит, что при нахождении в точке А пары синхронизированных друг с другом часов можно перемещать одни из них по криволинейной замкнутой траектории с неизменной скоростью до тех пор, пока они вновь не достигнут точки А (и на это будет затрачено, например, t секунд), но в момент прибытия они покажут меньшее время, чем те часы, что оставались неподвижны.

Шесть лет спустя статус парадокса этой теории придал Поль Ланжевен. «Завернутая» в наглядную историю, она скоро приобрела популярность даже среди людей, далёких от науки. По мнению самого Ланжевена, нестыковки в теории объяснялись тем, что, возвращаясь на Землю, путешественник двигался ускоренно.

Ещё через два года Максом фон Лауэ была выдвинута версия о том, что значимы вовсе не моменты ускорения объекта, а тот факт, что он попадает в другую инерциальную систему отсчёта, когда оказывается на Земле.

Наконец в 1918 году Эйнштейн смог сам объяснить парадокс двух близнецов через влияние поля гравитации на течение времени.

Объяснение парадокса

Парадокс близнецов объяснение имеет довольно простое: изначальное предположение о равноправии между двумя системами отсчёта неверно. Путешественник пребывал в инерциальной системе отсчёта не всё время (это же касается и истории с часами).

Как следствие, многие посчитали, что специальную теорию относительности нельзя использовать для правильной формулировки парадокса близнецов, иначе получаются несовместимые друг с другом предсказания.

Всё разрешилось, когда была создана Она дала точное решение для имеющейся задачи и смогла подтвердить, что из пары синхронизированных часов отставать будут именно те, которые находятся в движении. Так изначально парадоксальная задача получила статус рядовой.

Спорные моменты

Существуют предположения о том, что момент ускорения достаточно значим для изменения скорости хода часов. Но в ходе многочисленных экспериментальных проверок было доказано, что под действием ускорения движение времени не ускоряется и не замедляется.

В итоге отрезок траектории, на котором один из братьев ускорялся, демонстрирует только некоторую асимметричность, возникающую между путешественником и домоседом.

Но данное утверждение не может объяснить, почему время замедляется именно у движущегося объекта, а не у того, что остаётся в покое.

Проверка практикой

Парадокс близнецов формулы и теоремы описывают точно, но это для человека некомпетентного довольно сложно. Для тех, кто больше склонен доверять практике, а не теоретическим выкладкам, были проведены многочисленные эксперименты, целью которых было доказать или опровергнуть теорию относительности.

В одном из случаев использовались Они отличаются сверхточностью, и для минимальной рассинхронизации им потребуется не один миллион лет. Помещённые в пассажирский самолёт, они несколько раз облетели Землю и после показали вполне заметное отставание от тех часов, которые никуда не летали. И это притом что скорость передвижения у первого образца часов была далеко не световая.

Другой пример: более продолжительна жизнь мюонов (тяжёлых электронов). Эти элементарные частицы в несколько сотен раз тяжелее обычных, обладают отрицательным зарядом и формируются в верхнем слое земной атмосферы благодаря действию космических лучей. Скорость их движения к Земле лишь на малость уступает световой. При их истинной продолжительности жизни (в 2 микросекунды) они распадались бы раньше, чем коснутся поверхности планеты. Но в процессе полёта они живут в 15 раз дольше (30 микросекунд) и всё-таки достигают цели.

Физическая причина парадокса и обмен сигналами

Парадокс близнецов физика объясняет и более доступным языком. Пока происходит полёт, оба брата-близнеца находятся вне зоны досягаемости друг для друга и не могут на практике удостовериться в том, что их часы движутся синхронно. Точно определить, насколько замедляется движение часов у путешественника, можно, если проанализировать сигналы, которые они будут посылать друг другу. Это условные сигналы «точного времени», выраженные как световые импульсы или видеотрансляция циферблата часов.

Нужно понимать, что передаваться сигнал будет не в настоящем времени, а уже в прошедшем, поскольку распространение сигнала происходит с определённой скоростью и требуется определённое время, чтобы пройти от источника до приёмника.

Правильно оценивать результат сигнального диалога можно только с учётом эффекта Доплера: при удалении источника от приёмника частота сигнала уменьшится, а при приближении - увеличится.

Формулировка объяснения в парадоксальных ситуациях

Для объяснения парадоксов подобных историй с близнецами можно применить два основных способа:

  1. Внимательное рассмотрение имеющихся логических построений на предмет противоречий и выявление логических ошибок в цепи рассуждений.
  2. Осуществление детальных вычислений с целью оценки факта торможения времени с точки зрения каждого из братьев.

В первую группу попадают вычислительные выражения, основанные на СТО и вписанные в Здесь подразумевается, что моменты, связанные с ускорением движения, настолько малы по отношению к общей длине полёта, что ими можно пренебречь. В отдельных случаях могут вводить третью инерциальную систему отсчёта, которая продвигается по встречному направлению в отношении путешественника и используется для передачи данных с его часов на Землю.

Во вторую группу входят вычисления, построенные с учётом того, что моменты ускоренного движения всё же присутствуют. Сама эта группа также подразделяется на две подгруппы: в одной применяется гравитационная теория (ОТО), а в другой - нет. Если ОТО задействована, то подразумевается, что в уравнении фигурирует поле гравитации, которое соответствует ускорению системы, и берётся во внимание изменение скорости течения времени.

Заключение

Все обсуждения, связанные с мнимым парадоксом, обусловлены лишь кажущейся логической ошибкой. Как бы ни были сформулированы условия задачи, добиться того, чтобы братья оказались в полностью симметричных условиях, невозможно. Важно учесть, что время замедляется именно на движущихся часах, которым пришлось пройти через смену систем отсчёта, потому что одновременность событий относительна.

Рассчитать, насколько замедлилось время с точки зрения каждого из братьев, можно двумя способами: используя простейшие действия в рамках специальной теории относительности либо ориентируясь на неинерциальные системы отсчёта. Результаты обеих цепей вычислений могут быть взаимно согласованы и в равной степени служат для подтверждения того, что на движущихся часах время идёт медленнее.

На этом основании можно предполагать, что при перенесении мысленного эксперимента в реальность тот, кто займёт место домоседа, действительно состарится быстрее, чем путешественник.

Специальные и общие теории относительности говорят о том, что у каждого наблюдателя свое время. То есть, грубо говоря, один человек движется и по своим часам определяет одно время, другой человек как-то движется и по своим часам определяет другое время. Безусловно, если эти люди движутся относительно друг друга с небольшими скоростями и ускорениями, они измеряют практически одно и то же время. По нашим часам, которые мы используем, мы это отличие измерить неспособны. Я не исключаю, что если часами, которые измеряют время с точностью до одной секунды за время жизни Вселенной, будут оснащены два человека, то, походив как-то по-разному, они, возможно, увидят какую-то разницу в каком-то n знаке. Однако эти различия слабые.

Специальные и общие теории относительности предсказывают, что эти различия будут существенными, если два товарища друг относительно друга движутся с большими скоростями, ускорениями или вблизи черной дыры. Например, один из них далеко от черной дыры, а другой близко к черной дыре или какому-нибудь сильно гравитирующему телу. Или один покоится, а другой движется с какой-то скоростью относительно него или с большим ускорением. Тогда различия будут существенные. Насколько большие, я не говорю, и это измеряется на эксперименте с высокоточными атомными часами. Люди летают на самолете, потом привозят, сравнивают, что показали часы на земле, что показали часы на самолете и не только. Таких экспериментов множество, все они согласуются с форменными предсказаниями общей и специальной теории относительности. В частности, если один наблюдатель покоится, а другой относительно него движется с постоянной скоростью, то пересчет хода часов от одного к другому задается преобразованиями Лоренца, как пример.

В специальной теории относительности на основе этого есть так называемый парадокс близнецов, который описан во многих книгах. Заключается он в следующем. Вот представьте себе, что у вас есть два близнеца: Ваня и Вася. Скажем, Ваня остался на Земле, а Вася полетел на альфу Центавра и вернулся. Теперь говорится, что относительно Вани Вася двигался с постоянной скоростью. У него время двигалось медленнее. Он вернулся, соответственно, он должен быть моложе. С другой стороны, парадокс формулируется так: теперь, наоборот, относительно Васи (движение с постоянной скоростью относительно) Ваня движется с постоянной скоростью, несмотря на то что он находился на Земле, то есть, когда Вася вернется на Землю, по идее, у Вани часы должны показывать меньше времени. Кто же из них младше? Какое-то логическое противоречие. Совершенная чушь эта специальная теория относительности, получается.

Факт номер раз: сразу нужно понять, что преобразованиями Лоренца можно пользоваться, если переходить из одной инерциальной системы отсчета в другую инерциальную систему отсчета. И эта логика, что у одного время движется медленнее за счет того, что он движется с постоянной скоростью, только на основе преобразования Лоренца. А у нас в данном случае один из наблюдателей почти инерциальный - тот, который находится на Земле. Почти инерциальный, то есть эти ускорения, с которыми Земля движется вокруг Солнца, Солнце движется вокруг центра Галактики и так далее, - это все маленькие ускорения, для данной задачи заведомо можно этим пренебречь. А второй должен слетать на альфу Центавра. Он должен разогнаться, затормозиться, потом опять разогнаться, затормозиться - это все неинерциальные движения. Поэтому такой наивный пересчет сразу не работает.

Как же правильно объяснить этот парадокс близнецов? Он на самом деле достаточно просто объясняется. Для того чтобы сравнивать время жизни двух товарищей, они должны встречаться. Они должны сначала встретиться в первый раз, оказаться в одной точке пространства в одно и то же время, сравнить часы: 0 часов 0 минут 1 января 2001 года. Потом разлететься. Один из них будет двигаться одним образом, у него как-то часы будут тикать. Другой будет двигаться другим образом, и у него как-то своим образом будут тикать часы. Потом они снова встретятся, вернутся в одну и ту же точку в пространстве, но уже в другое время по отношению к первоначальному. В одно и то же время окажутся в одной и той же точке по отношению к каким-нибудь дополнительным часам. Важно следующее: теперь они могут сравнить часы. У одного натикало столько-то, у другого натикало столько-то. Как это объясняется?

Представьте эти две точки в пространстве и времени, где они встречались в начальный момент и в конечный момент, в момент отлета на альфу Центавра, в момент прилета с альфы Центавра. Один из них двигался инерциально, будем считать для идеала, то есть он двигался по прямой. Второй из них двигался неинерциально, поэтому он в этом пространстве и времени двигался по какой-то кривой - ускорялся, замедлялся и так далее. Так вот одна из этих кривых обладает свойством экстремальности. Ясно, что среди всех возможных кривых в пространстве и времени прямая является экстремальной, то есть она имеет экстремальную длину. Наивно, кажется, что она должна иметь наименьшую длину, потому что на плоскости среди всех кривых наименьшую длину между двумя точками имеет прямая. В пространстве и времени Минковского у него так устроена метрика, так устроен способ измерения длин, прямая имеет наидлиннейшую длину, как это ни странно звучит. Прямая имеет самую большую длину. Поэтому тот, который двигался инерциально, оставался на Земле, измерит больший промежуток времени, чем тот, который летал на альфу Центавра и вернулся, поэтому он будет старше.

Обычно такие парадоксы придумываются для того, чтобы опровергнуть ту или иную теорию. Придумываются самими же учеными, которые занимаются этой областью науки.

Исходно, когда появляется новая теория, ясное дело, что ее вообще никто не воспринимает, особенно если она противоречит каким-то устоявшимся на тот момент данным. И люди просто сопротивляются, это безусловно, придумывают всякие контраргументы и так далее. Это все проходит тяжелейший процесс. Человек борется за то, чтобы его признали. Это всегда связано с долгими промежутками времени и большой нервотрепкой. Возникают вот такие парадоксы.

Кроме парадокса близнецов есть, например, такой парадокс со стержнем и сараем, так называемое Лоренцево сокращение длин, что если вы стоите и смотрите на стержень, который мимо вас летит с очень высокой скоростью, то он выглядит короче, чем он на самом деле есть в той системе отсчета, в которой он покоится. С этим связан вот такой парадокс. Представьте себе ангар или сквозной сарай, у него две дырки, он какой-то длины, неважно какой. Представьте себе, что на него летит этот стержень, собирается пролететь сквозь него. Сарай в своей системе покоя имеет одну длину, скажем 6 метров. Стержень в своей системе покоя имеет длину 10 метров. Представьте себе, что у них скорость сближения такая, что в системе отсчета сарая стержень сократился до 6 метров. Можно посчитать, какая это скорость, но сейчас неважно, она достаточно близка к скорости света. Стержень сократился до 6 метров. Это значит, что в системе отсчета сарая стрежень в какой-то момент целиком поместится в сарай.

Человек, который стоит в сарае, - вот мимо него летит стержень - в какой-то момент увидит этот стержень, целиком лежащий в сарае. С другой стороны, движение с постоянной скоростью относительное. Соответственно, можно рассматривать, как будто бы стержень покоится, а на него летит сарай. Значит, в системе отсчета стержня сарай сократился, причем сократился он в то же число раз, что и стрежень в системе отсчета сарая. Значит, в системе отсчета стержня сарай сократился до 3,6 метра. Теперь в системе отсчета стержня стержень никак не может поместиться в сарай. В одной системе отсчета он помещается, в другой системе отсчета он не помещается. Чушь какая-то.

Ясное дело, что такая теория не может быть верной, - кажется на первый взгляд. Однако объяснение простое. Когда вы видите стержень и говорите: «Он данной длины», это значит, что к вам поступает сигнал от этого и от этого конца стержня одновременно. То есть, когда я говорю, что стержень поместился в сарай, двигаясь с какой-то скоростью, это значит, что событие совпадения этого конца стержня с этим концом сарая одновременно с событием совпадения этого конца стержня с этим концом сарая. Эти два события одновременны в системе отсчета сарая. Но вы же слышали, наверное, что в теории относительности одновременность относительна. Так вот оказывается, что в системе отсчета стержня эти два события неодновременны. Просто сначала совпадает правый конец стержня с правым концом сарая, потом совпадает левый конец стержня с левым концом сарая через какой-то промежуток времени. Этот промежуток времени как раз равен тому времени, за которое эти 10 метров минус 3,6 метра с этой данной скоростью пролетят конец стержня.

Чаще всего теорию относительности опровергают по той причине, что для нее очень легко придумываются подобные парадоксы. Этих парадоксов существует масса. Есть такая книжка Тейлора и Уилера «Физика пространства-времени», она написана достаточно доступным языком для школьников, где подавляющее большинство этих парадоксов разбираются и объясняются с использованием достаточно простых аргументов и формул, как объясняется тот или иной парадокс в рамках теории относительности.

Можно придумать какой-нибудь способ объяснения каждого данного факта, который выглядит проще, чем тот способ, который предоставляет теория относительности. Однако важным свойством специальной теории относительности является то, что она объясняет не каждый отдельный факт, а всю эту совокупность фактов, вместе взятых. Вот если вы придумали объяснение какого-то одного факта, выделенного из всей этой совокупности, пусть оно объясняет этот факт лучше, чем специальная теория относительности, на ваш взгляд, однако еще нужно проверить, что он и все остальные факты тоже объясняет. А как правило, все эти объяснения, которые звучат более просто, не объясняют всего остального. И надо помнить, что в тот момент, когда придумывается та или иная теория, - это действительно какой-то психологический, научный подвиг. Потому что фактов на этот момент существует один, два или три. И вот человек, основываясь на этом одном или трех наблюдениях, формулирует свою теорию.

В тот момент кажется, что она противоречит всему, что было до того известно, если теория кардинальная. Придумываются вот такие парадоксы, чтобы ее опровергнуть, и так далее. Но, как правило, эти парадоксы объясняются, появляются какие-то новые дополнительные экспериментальные данные, они проверяются, соответствуют ли они этой теории. Также из теории следуют какие-то предсказания. Она же основывается на каких-то фактах, что-то там утверждает, из этого утверждения можно что-то вывести, получить и потом сказать, что если эта теория верна, то должно быть так-то и так-то. Идем, проверяем, так это или не так. Так-то. Значит, теория хороша. И так до бесконечности. В общем-то требуется бесконечно много экспериментов, чтобы подтвердить теорию, но на данный момент в той области, в которой специальная и общая теория относительности применимы, фактов, опровергающих эти теории, не существует.