Химический состав комплекса гольджи. Строение, функции и характерные признаки комплекса гольджи

Строение комплекса Гольджи

Комплекс Гольджи (КГ), или внутренний сетчатый аппарат , - это особенная часть метаболической системы цитоплазмы, участвующая в процессе выделения и формирования мембранных структур клетки.

КГ видно в оптический микроскоп как сетку или изогнутые палочкообразные тельца, лежащие вокруг ядра.

Под электронным микроскопом выявлено, что эта органелла представлена тремя видами образований:

Все компоненты аппарата Гольджи образованы гладкими мембранами.

Замечание 1

Изредка АГ имеет зернисто – сетчатую структуру и расположен около ядра в виде колпачка.

АГ встречается во всех клетках растений и животных.

Замечание 2

Аппарат Гольджи значительно развит в секреторных клетках. Особенно хорошо он виден в нервных клетках.

Внутреннее межмембранное пространство заполнено матриксом, который содержит специфические ферменты.

Аппарат Гольджи имеет две зоны:

  • зону формирования , куда с помощью везикул поступает материал, который синтезируется в эндоплазматической сети;
  • зону созревания , где формируется секрет и секреторные мешочки. Этот секрет накопляется на терминальных участках АГ, откуда отпочковываются секреторные везикулы. Как правило, такие везикулы переносят секрет за пределы клетки.
  • Локализация КГ

В аполярных клетках (например, в нервных) КГ расположен вокруг ядра, в секреторных он занимает место между ядром и апикальным полюсом.

Комплекс мешочков Гольджи имеет две поверхности:

формировательную (незрелую или регенераторную) цис-поверхность (от лат. Сis – с этой стороны); функциональную (зрелую) – транс-поверхность (от лат. Trans – через, за).

Столбик Гольджи своей выпуклой формировательной поверхностью обращён в сторону ядра, прилегает к гранулярной эндоплазматической сети и содержит мелкие круглые пузырьки, названные промежуточными . Зрелая вогнутая поверхность столбика мешочков обращена к вершине (апикальному полюсу) клетки и оканчивается большими пузырьками.

Образование комплекса Гольджи

Мембраны КГ синтезируются гранулярной эндоплазматической сетью, которая прилегает к комплексу. Соседние с ним участки ЭПС теряют рибосомы, от них отпочковываются мелкие, так называемые, транспортные, или промежуточные везикулы . Они перемещаются к формировательной поверхности столбика Гольджи и сливаются с первым её мешочком. На противоположной (зрелой) поверхности комплекса Гольджи находится мешочек неправильной формы. Его расширение – просекреторные гранулы (конденсирующие вакуоли) – непрерывно отпочковываюся и превращаются в пузырьки, заполненные секретом – секреторные гранулы. Таким образом, в меру использования мембран зрелой поверхности комплекса на секреторные везикулы, мешочки формировательной поверхности пополняются за счёт эндоплазматической сетки.

Функции комплекса Гольджи

Основная функция аппарата Гольджи – выведение синтезированных клеткой веществ. Эти вещества транспортируются по клетках эндоплазматической сети и накопляются в пузырьках сетчатого аппарата. Потом они или выводятся во внешнюю среду или же клетка использует их в процессе жизнедеятельности.

В комплексе так же концентрируются некоторые вещества (например, красители), которые поступают в клетку извне и должны быть выведены из неё.

В растительных клетках комплекс содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения целлюлозной оболочки клетки.

Кроме того, КГ синтезирует те химические вещества, которые образуют клеточную мембрану.

В общем, аппарат Гольджи выполняет такие функции:

  1. накопление и модификация макромолекул, которые синтезировались в эндоплазматической сети;
  2. образование сложных секретов и секреторных везикул путём конденсации секреторного продукта;
  3. синтез и модификация углеводов и гликопротеидов (образование гликокаликса, слизи);
  4. модификация белков – добавление к полипептиду различных химических образований (фосфатных – фосфориллирование, карбоксильных – карбоксилирование), формирование сложных белков (липопротеидов, гликопротеидов, мукопротеидов) и расщепление полипептидов;
  5. имеет важное значение для формирования, обновления цитоплазматической мембраны и других мембранных образований благодаря образованию мембранных везикул, которые в дальнейшем сливаются с клеточной мембраной;
  6. образование лизосом и специфической зернистости в лейкоцитах;
  7. образование пероксисом.

Белковое и, частично, углеводное содержимое КГ поступает с гранулярной эндоплазматической сетки, где оно синтезируется. Основная часть углеводного компонента образуется в мешочках комплекса с участием ферментов гликозилтрансфераз, которые находятся в мембранах мешочков.

В комплексе Гольджи окончательно формируются клеточные секреты, содержащие гликопротеиды и гликозаминогликаны. В КГ созревают секреторные гранулы, которые переходят в пузырьки, и перемещение этих пузырьков в направлении плазмалеммы Окончательный этап секреции – это выталкивание сформированных (зрелых) везикул за пределы клетки. Выведение секреторных включений из клетки осуществляется путём вмонтирования мембран пузырька в плазмалемму и выделение секреторных продуктов за пределы клетки. В процессе перемещения секреторных пузырьков к апикальному полюсу клетки мембраны их утолщаются из начальных 5-7 нм, достигая толщины плазмалеммы 7-10 нм.

Замечание 4

Существует взаимозависимость между активностью клетки и размерами комплекса Гольджи – секреторные клетки имеют большие столбики КГ, тогда как несекреторные содержат небольшое количество мешочков комплекса.

Комплекс Гольджи был обнаружен в 1898-м году. Эта мембранная структура предназначена для выведения соединений, которые синтезированы в эндоплазматическом ретикулуме. Далее подробнее познакомимся с этой системой.

Комплекс Гольджи: строение

Аппарат представляет собой стопку мембранных дискообразных цистерн. Эти мешочки несколько расширены к краям. С цистернами связана система пузырьков Гольджи. В животных клетках присутствует одна большая либо несколько стопок, которые соединены трубками, в растительных клетках обнаруживаются диктиосомы (несколько отдельных стопок). Комплекс Гольджи включает в себя три отдела. Они окружены мембранными пузырьками:

  • ближний к ядру цис-отдел;
  • медиальный;
  • транс отдел (наиболее удаленный от ядра).

Данные системы отличаются ферментным набором. В цис-отделе первый мешочек именуется "цистерной спасения". С ее помощью рецепторы, которые поступают из эндоплазматической промежуточной сети, движутся обратно. Ферментом цис-отдела называют фосфогликозидазу. Она присоединяет к маннозе (углеводу) фосфат. В медиальном отделе располагается два фермента. Это, в частности, меннадиаза и N-ацетилглюкозаминтрансфераза. Последняя присоединяет гликозамины. Ферменты транс-отдела: пептидаза (она осуществляет протеолиз) и трансфераза (с ее помощью происходит переброс хим. групп).

Комплекс Гольджи: функции

Данная структура обеспечивает разделение белков на следующие три потока:

  1. Лизосомальный. По нему гликозированные белки проникают в цис-отдел аппарата Гольджи. Часть из них фосфолитируется. В результате формируется манноза-6-фосфат - маркетлизосомальных ферментов. В дальнейшем данные фосфолированные белки поступят в лизосомы, а не будут модифицироваться.
  2. Конститутивный экзоцитоз (секреция). В данный поток включены белки и липиды, которые стали компонентами поверхностного клеточного аппарата, гликокаликса в том числе. Также здесь могут присутствовать соединения, которые входят в состав внеклеточного матрикса.
  3. Индуцируемая секреция. В этот поток проникают белки, функционирующие за пределами клетки, поверхностного аппарата, во внутренней среде в организме. Индуцируемая секреция характерна для секреторных клеток.

Комплекс Гольджи принимает участие в формировании слизистого секрета - мукополисахаридов (гликозамингликанов). Аппарат также образует углеводные компоненты гликокаликса. В основном они представлены гликолипидами. Система также обеспечивает сульфатирование белковых и углеводных элементов. Комплекс Гольджи участвует в частичном протеолизе белков. В некоторых случаях благодаря этому соединение из неактивной переходит в активную форму (например, проинсулин трансформируется в инсулин).

Перемещение соединений из эндоплазматической сети (ЭПС)

Комплекс асимметричен. Расположенные ближе к ядру клетки включают в себя самые незрелые белки. К этим мешочкам непрерывно присоединяются везикулы - мембранные пузырьки. Они отпочковываются от эндоплазматического гранулярного ретикулума. На его мембранах проходит процесс синтеза белков рибосомами. Транспорт соединений из эндоплазматической сети в комплекс Гольджи осуществляется неизбирательно. При этом неправильно либо не полностью свернутые белки продолжают оставаться в ЭПС. Обратное перемещение соединений в эндоплазматическую сеть требует наличия особой сигнальной последовательности и становится возможным благодаря связыванию этих веществ с мембранными рецепторами в цис-отделе.

Модификация белков

В цистернах комплекса происходит созревание соединений, которые предназначены для секреции, трансмембранных, лизосомных и прочих веществ. Эти белки последовательно по цистернам перемещаются в органеллы. В них начинаются их модификации - фосфолирование и гликозирование. В ходе первого процесса к белкам присоединяется остаток ортофосфорной кислоты. При О-гликозировании происходит пристыковка сложных сахаров посредством атома кислорода. В разных цистернах содержатся различные каталитические ферменты. Следовательно, с белками, созревающими в них, происходят последовательно различные процессы. Несомненно, такое ступенчатое явление должно контролироваться. В качестве своеобразного "знака качества" выступают полисахаридные остатки (маннозные, преимущественно). Они маркируют созревающие белки. Дальнейшее перемещение по цистернам соединений не до конца понятно науке, при том, что резистентные вещества остаются в меньшей либо большей степени ассоциированы с одним мешочком.

Транспорт белков из аппарата

От транс-отдела комплекса отпочковываются пузырьки. В них содержатся полностью зрелые белковые соединения. Основной функцией комплекса считается сортировка белков, проходящих через него. В аппарате осуществляется формирование "трехнаправленного потока белков" - созревание и транспорт:

  1. Соединений плазматической мембраны.
  2. Секретов.
  3. Лизосомных ферментов.

Посредством везикулярного транспорта белки, прошедшие сквозь комплекс Гольджи, доставляются в те или иные участки в соответствии с "метками". Данный процесс также не до конца понятен науке. Установлено, что транспорт белков из комплекса требуют участия особых мембранных рецепторов. Они распознают соединение и обеспечивают селективную стыковку пузырька и той либо иной органеллы.

Формирование лизосом

Через аппарат проходит множество гидролитических ферментов. Добавление метки, о которой говорилось выше, осуществляется с участием двух ферментов. Специфическое распознавание лизосомальных гидролаз по элементам их третичной структуры и присоединение N -ацетилглюкозаминфосфата осуществляется N-ацетилглюкозаминфосфотрансферазой. Фосфогликозид - второй фермент - производит отщепление N-ацетилглюкозамина, в результате чего формируется М6Ф-метка. Она, в свою очередь, распознается белком-рецептором. При его помощи осуществляется поступление гидролаз в везикулы и оправка их в лизосомы. В них в условиях кислой среды происходит отщепление фосфата от зрелой гидролазы. При наличии нарушений в деятельности N-ацетилглюкозаминфосфотрансферазыв связи с мутациями либо по причине генетических дефектов в рецепторе М6Ф, все лизосомные ферменты доставляются по умолчанию к наружной мембране. Затем они секретируются во внеклеточные условия. Установлено также, что некоторая часть М6Ф-рецепторов также транспортируются на наружную мембрану. Они осуществляют возврат случайно попавших лизосомных ферментов из внешней среды внутрь клетки в ходе эндоцитоза.

Транспорт веществ на наружную мембрану

Обычно еще на этапе синтеза белковые соединения наружной мембраны своими гидрофобными участками встраиваются в стенку эндоплазматической сети. Далее они доставляются в комплекс Гольджи. Оттуда они транспортируются к клеточной поверхности. В процессе слияния плазмалеммы и везикулы такие соединения не выделяются во внешнюю среду.

Секреция

Почти все вырабатываемые соединения в клетке (и белковой, и небелковой природы) проходят сквозь комплекс Гольджи. Там они складываются в секреторные пузырьки. У растений с участием диктиосом, таким образом, происходит выработка материала

Комплекс, или аппарат, Гольджи назван так в честь открывшего его ученого. Это клеточная органелла имеет вид комплекса полостей, ограниченных одинарными мембранами. В растительных клетках и у простейших представлен несколькими отдельными более мелкими стопками (диктиосомами).

Строение аппарата Гольджи

Комплекс Гольджи по внешнему виду, видимому в электронный микроскоп, напоминает стопку наложенных друг на друга дискообразных мешочков, около которых находится множество пузырьков. Внутри каждого «мешка» находится узкий канал, расширяющийся на концах в так называемые цистерны (иногда цистерной называют весь мешочек). От них отпочковываются пузырьки. Вокруг центральной стопки формируется система взаимосвязанных трубочек.

С наружней, имеющей несколько выпуклую форму, стороны стопки образуются новые цистерны путем слияния пузырьков отпочковывающихся от гладкой . На внутренней стороне цистерны завершают свое созревание и распадаются снова на пузырьки. Таким образом, цистерны (мешочки стопки) Гольджи перемещаются от наружней стороны к внутренней.

Часть комплекса, располагающаяся ближе к ядру, называется «цис». Та, что ближе к мембране, – «транс».

Функции комплекса Гольджи

Функции аппарат Гольджи разнообразны, в общей сложности сводятся к модификации, перераспределению синтезированных в клетке веществ, а также их выведению за пределы клетки, образованию лизосом и построению цитоплазматической мембраны.

Активность комплекса Гольджи высока в секреторных клетках. Белки, поступающие из ЭПС, концентрируются в аппарате Гольджи, затем переносятся к мембране в пузырьках Гольджи. Ферменты секретируются из клетки путем обратного пиноцитоза.

К приходящим в Гольджи белкам присоединены олигосахаридные цепочки. В аппарате они модифицируются и служат маркерами, с помощью которых белки сортируются и направляются по своему пути.

У растений при формировании клеточной стенки Гольджи секретирует углеводы, служащие матриксом для нее (целлюлоза здесь не синтезируется). Отпочковавшиеся пузырьки Гольджи перемещаются с помощью микротрубочек. Их мембраны сливаются с цитоплазматической мембраной, а содержимое включается в клеточную стенку.

Комплекс Гольджи бокаловидных клеток (находятся в толще эпителия слизистой оболочки кишечника и дыхательных путей) секретирует гликопротеин муцин, который в растворах образует слизь. Подобные вещества синтезируются клетками кончика корня, листьев и др.

В клетках тонкого кишечника аппарат Гольджи выполняет функцию транспорта липидов. В клетки попадают жирные кислоты и глицерол. В гладкой ЭПС происходит синтез своих липидов. Большинство из них покрываются белками и посредством Гольджи транспортируются к клеточной мембране. Пройдя через нее, липиды оказываются в лимфе.

Важной функцией является формирование .

Аппарат Гольджи

Эндоплазматический ретикулум, плазматическая мембрана и аппарат Гольджи составляют единую мембранную систему клетки, в пределах которой происходят процессы обмена белками и липидами с помощью направленного и регулируемого внутриклеточного мембранного транспорта.
Каждая из мембранных органелл характеризуется уникальным составом белков и липидов.

Строение АГ

АГ состоит из группы плоских мембранный мешков - цистерны , собранные в стопки - диктиосомы (~5-10 цистерн, у низших эукариот >30). Число диктиосом в разных клетках от 1 до ~500.
Отдельные цистерны диктиосомы переменной толщины - в центре ее мембраны сближены - просвет 25 нм, на переферии образуются расширения - ампулы ширина которых не постоянна. От ампул отшнуровываются ~50нм-1мкм пузырьки связанные с цистернами сетью трубочек.

У многоклеточных организмов АГ состоит из стопок цистерн связанных между собой в единую мембранную систему. АГ представляет собой полусферу, основание которой обращено к ядру. АГ дрожжей представлен изолированными единичными цистернами, окруженными мелкими пузырьками, тубулярной сетью, секреторными везикулами и гранулами. У мутантов дрожжей Sec7 и Sec14 наблюдается структура, напоминающая стопку цистерн клеток млекопитающих.
Для АГ характерна полярность его структур. Каждая стопка имеет два полюса: проксимальный полюс (формирующийся, цис-поверхность) и дистальный (зрелый,
транс-поверхность). Цис-полюс – сторона мембраны с которой сливаются пузырьки. Транс-полюс – сторона мембраны от которой пузырьки отпочковываются.

Пять функциональных компартментов АГ :
1. Промежуточные везикуло-тубулярные структуры (VTC или ERGIC - ER-Golgi intermediate compartment)
2. Цис-цистерна (cis) - цистерны расп ближе к ЭР:
3. Срединные (medial) цистерны – центральные цистерны
4. Транс-цистерна (trans) - наиболее удаленные от ЭР цистерны.
5. Тубулярная сеть, примыкающая к трансцистерне - транссеть Гольджи (TGN)
Стопки цистерн изогнуты, так что вогнутая трансповерхность обращена к ядру.
В среднем в АГ 3-8 цистерн, в активно секретирующих клеток может быть больше (в экзокринных клетках поджелудочной железы до 13).
Каждая цистерна имеет цис и транс поверхности. Синтезированные белки, мембранные липиды, гликозилированные в ЭР, попадают в АГ через цис-полюс. Вещества через стопки передаются транспортными
пузырьками отделяющиеся от ампул. При прохождении белков или липидов через стопки Гольджи, они претерпевают серию посттрансляционных модификаций, включающих изменение N-связанных олигосахаридов:
цис : маннозидазаI подравнивает длинные маннозные цепи до М-5
промежуточный : N-ацетилглюкоэаминтрансферазаI переносит N-ацетилглюкозамин
транс : добавляются концевые сахара –остатки галактозы и сиаловая к-та.

Строение Аппарата Гольджи и схема транспорта.

Пять компанентов АГ и схема транспорта: промежуточный (ERGIC), цис, промежуточный, транс и транссеть Гольджи (TGN). 1. Вход синтезированных белков, мембранных гликопротеинов и лизосомных ферментов в цистерну переходного ЭР, прилегающую к АГ и 2 - их выход из ЭР в пузырьках окаймленных COPI (антероградный транспорт). 3 - возможный транспорт карго от тубуло-везикулярных
кластеров к цис-цистерне АГ в пузырьках COPI; 3* - транспорт карго от более ранних к более поздним цистернам; 4 - возможный ретроградный везикулярный транспорт карго между цистернами АГ; 5 - возврат резидентных протеинов из АГ в tER с помощью пузырьков, окаймленных COPI (ретроградный транспорт); 6 и 6* - перенос лизосомных ферментов с помощью окаймленных клатрином пузырьков соответственно в ранние EE и поздние LE эндосомы; 7 - регулируемая секреция секреторных гранул; 8 - конститутивное встраивание мембранных белков в апикальную плазматическую мембрану ПМ; 9 - опосредованный рецептором эндоцитоз с помощью окаймленных клатрином пузырьков; 10 возвращение ряда рецепторов из ранних эндосом в плазматическую мембрану; 11 - транспорт лигандов из EE в LE и и лизосомы Ly; 12 - транспорт лигандов в неклатриновых пузырьках.

Функции АГ

1. Транспорт - через АГ проходят три группы белков: белки периплазматической мембраны, белки, предназначенные
на экспорт из клетки, и лизосомные ферменты.
2. Cортировка для транспорта: сортировка для дольнейшего транспорта к органеллам, ПМ, эндосомам, секреторным пузырькам происходит в транс-комплексе Гольджи.
3. Секреция - секреция продуктов, синтезируемых в клетке.
3. Гликозилирование белков и липидов: гликозидазы удаляют остатки сахаров - дегликозилирование, гликозилтрансферазы прикрепляют сахара обратно на главную углеводную цепь - гликозилирование.В нем происходят гликозилирование олигосахаридных цепей белков и липидов, сульфатирование ряда ахаров и тирозиновых остатков белков, а также активация предшественников полипептидных гормонов и нейропептидов.
4. Синтез полисахаридов - многие полисахариды образуются в АГ в том числе пектин и гемицеллюлоза, образующие клеточные стенки растений и большинство гликозаминогликанов образующих межклеточный матрикс у животных

5. Сульфатирование - большинство сахаров, добавляемых к белковай сердцевине протеогликана, сульфатируются
6. Добавление маннозо-6-фосфата : М-6-P добавляется как направляюций сигнал к ферментам, предназначенным для лизосом.

ГЛИКОЗИЛИРОВАНИЕ
Большинство белков начинает гликозилироваться в шероховатом ЭР посредством добавления к растущей полипептидной цепи N-связанных олигосахаридов. Если гликопротеин свернут в нужной конформации, он выходит из ЭР и направляется в АГ, где происходит его посттрансляционная модификация.
В гликозилировании секретируемых продуктов принимают участие ферменты - гликозилтрансферазы. Они участвуют в ремоделированиии Т-связанных боковых олигосахаридных цепей и добвлении О-связанных гликанов и олигосахаридных частей протеогликанов гликолипидов.В модификации олигосахаридов участвуют фрменты а-маннозидаза I и II, которые также являются резидентными белками АГ.

Кроме того в АГ происходит гликозилирование липидно-протеиновых мембранных доменнов, называемых рафтами.
Долихолфосфат
добавляет углеводный комплекс – 2GlcNAc-9-манноз-3-глюкозы к аспарагину растущего полипептида. Терминальная глюкоза отщепляется в два этапа: глюкозидаза I отщепляет терминальный остаток глюкозы, глюкозидаза II удаляет еще два остатка глюкозы. Затем отщепляется манноза. На этом начальный этап процессинга углеводов в ЭР завершается и белки несущие олигосахаридный комплекс, поступают в АГ
В первых цистернах АГ удаляются еще три остатка маннозы. На этой стадии стержневой комплекс имеет еще 5 маннозных остатков. N-ацетилглюкозаминтрансфераза I добавляет один остаток N-ацетилглюкозамина GlcNAc. От образовавшегося комплекса отщепляется еще 3 остатка маннозы. Состоит теперь из двух молоекул GlcNAc-3-маннозо-1-GlcNAc является стержневой структурой, к которой гликозилтрансферезы добавляют другие
углеводы. Каждая гликозилтрансфераза распознает развивающуюся углеводную структуру и добавляет к цепи свой собственный сахарид.

СЕКРЕЦИЯ
Схема секреции
:
Синтезированные в ЭР белки концентрируются в сайтах выхода переходного ЭР благодаря активности коатомерного комплекса COPII и сопутствующих компонентов и транспортируются в промежуточный между ЭР и АГ компартмент ERGIC, из которого они переходят в АГ в отпочковывающихся пузырьках, или по тубулярным структурам. Белки ковалентно модифицируются, проходя через цистерны АГ, на транс-поверхности АГ сортируются и отправляются к местам своего назначения. Секреция белков требует пассивного встраивания новых мембранных компонентов в плазматическую мембрану. Для восстановления баланса мембран служит контитутивный рецепторопосредованный эндоцитоз.
Эндо и экзоцитозный пути переноса мембран имеют общие закономерности в направленности движения мембранных переносчиков к сооответствующей
мишени и в специфичности слияния и почкования. Основным местом встречи этих путей является АГ.

Аппарат Гольджи (комплекс Гольджи)- АГ

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа.

АГ представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен.

Аппарат Гольджи обычно расположен около клеточного ядра, вблизи ЭПС (в животных клетках часто вблизи клеточного центра).

Комплекс Гольджи

Слева – в клетке, среди других органоидов.

Справа – комплекс Гольджи с отделяющимися от него мембранными пузырьками

Все вещества, синтезированные на мембранах ЭПС переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи. Поступившие органические вещества из ЭПС претерпевают дальнейшие биохимические превращения, накапливаются, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Функции аппарата Гольджи:

1 Участие в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

2) Секреторная - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза.

3) Обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

4) Место образования лизосом.

5) Транспорт веществ

Лизосомы

Лизосома была открыта в 1949 г. К. де Дювом (Нобелевская премия за 1974 г.).

Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов - гидролаз. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов (протеиназ, нуклеаз, глюкозидаз, фосфатаз, липаз и др.), расщепляющих различные биополимеры. Расщепление веществ с помощью ферментов называют лизисом (лизис-распад).

Ферменты лизосом синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. (Лизосомы иногда называют «желудками» клетки)

Лизосома – мембранный пузырек, содержащий гидролитические ферменты

Функции лизосом:

1. Расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2. Разрушают старые, поврежденные, избыточные органоиды. Разрушение органоидов может происходить и во время голодания клетки.

3. Осуществляют автолиз (саморазрушение) клетки (разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки. Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку

Эндоплазматическая сеть, аппарат Гольджи и лизосомы образуют единую вакуолярную систему клетки, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функции мембран.

Митохондрии

Строение митохондрии:
1 - наружная мембрана;
2 - внутренняя мембрана; 3 - матрикс; 4 - криста; 5 - мультиферментная система; 6 - кольцевая ДНК.

По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр - от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами . Наружная мембрана митохондрий гладкая, внутренняя образует многочисленные складки - кристы. Кристы увеличивают площадь поверхности внутренней мембраны. Число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, участвующие в синтезе аденозинтрифосфата (АТФ). Здесь энергия химических связей превращается в богатые энергией (макроэргические) связи АТФ . Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза .Внутренняя среда данных органелл называется матриксом . Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии - полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно (митохондрии содержат собственную цепочку ДНК, в которой сосредоточено до 2% ДНК самой клетки).

Функции митохондрий:

1. Преобразование энергии химических связей в макроэргические связи АТФ (митохондрии - "энергетические станции" клетки).

2. Участвуют в процессах клеточного дыхания - кислородное расщепление органических веществ.

Рибосомы

Строение рибосомы:
1 - большая субъединица; 2 - малая субъединица.

Рибосомы - немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух фрагментов - большой и малой субъединиц. Химический состав рибосом - белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас.

Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК.



Образуются субъединицы рибосом в ядрышке. Пройдя через поры в ядерной оболочке рибосомы попадают на мембраны эндоплазматической сети (ЭПС).

Функция рибосом: сборка полипептидной цепочки (синтез белковых молекул из аминокислот).

Цитоскелет

Клеточный цитоскелет образуется микротрубочками и микрофиламентами .

Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина.

Микротрубочки располагаются в гиалоплазме и выполняют следующие функции :

· создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;

· принимают участие в процессе распределения хромосом клетки(образуют веретено деления);

· обеспечивают перемещение органелл;

Микрофиламенты - нити, которые размещаются под плазматической мембраной и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр

Клеточный центр - органоид, состоящий из 2 мелких гранул- центриолей и лучистой сферы вокруг них - центросферы. Центриоль - это цилиндрическое тельце длиной 0,3-0,5 мкм и диаметром около 0,15 мкм. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. Центриоли располагаются парами под прямым углом друг к другу. Активная роль клеточного центра обнаруживается при делении клетки. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей.

Функции:

1. Обеспечение равномерного расхождения хромосом к полюсам клетки во время митоза или мейоза.

2. Центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками . При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

У животных и человека реснички они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Функции:

Специфические

Ядро. Хромосомы